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Tokamak Energy: developing spherical tokamak fusion pilot plants with
HTS magnets for deployment in the 2030s

Approach

High-field spherical tokamak (ST)
using magnet made from high
temperature superconductor (HTS)

Team of 250+

World-class scientists, engineers
and commercial specialists

$250Mraised to date

Financial backing from private
capitaland government grants
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The ST40 high -field spherical tokamak
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A first -of-a-kind public-private collaboration
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In 2019 ORNL, PPPL, and Tokamak Energy signed a
CRADA covering a ~3 year collaborative research

program. This has since been extended to Aug-
2024.

U.S Department of Energy Fusion Energy Sciences
(DOE FES) program awarded a total of $3.9M to
ORNL and PPPL to carry out open public research
on ST40.

The collaborative research covers:
e STenergy confinement scalings w.r.t. high B &1,

* Thomson Scattering real-time data acquisition and
hardware

* Modelling of RF driven scenarios
* Operations and measurement support
* Energetic particle studies

e And more !



ST40: Expanding the high  -field spherical tokamak physics basis for
fusion energy development

* High ion temperature plasmas

* Core confinement &stability

* Plasma exhaust

* Solenoid free start-up and ramp-up

* Recent scenario development and future plans
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Record ion temperatures achieved in compact high -field ST
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Transport and micro -turbulence properties of high ion temperature
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ST40: Expanding the high  -field spherical tokamak physics basis for
fusion energy development

« Core confinement & stability

STs have unique transport and confinement properties that scale favourably to pilot plant regimes
ST40 is exploring confinement & stability at high toroidal fields
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Applicability of reduced and analytic transport models investigated

Recalibration of trapped particle model
in quasi -linear gyro -fluid transport model
TGLF improves agreement

* Predictive modelling in good agreement
with both Ohmic and hot  -ion mode pulses

—>poster by M.S. Anastopoulos Tzanis — Thursday 14:00

Analytical BgB and CBDM models tuned
against database of ~100 pulses

* Both models capture T, and T, trend with B

* Further experiments needed to test I
dependence

—>poster by A. Dnestrovskii — Thursday 14:00
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First look at confinement time mass dependence in spherical tokamaks
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» Operations with different fuel species,
HO -H", D'—>H" and D°—D™, enabled
first study of confinement time mass
dependence in spherical tokamak

* Approximate doubling of core 1on
temperature from ~5 to ~10 keV with
increasing ion mass

Strong near linear dependence of total
confinementtime on M,/ in hot -ion

mode plasmas

—>poster by S. Kaye — Friday 14:00

S.Kaye et al., PPCF 2023
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Improved particle confinement with argon impurity seeding

No degradation in performance observed with argon
impurity seeding
* Increased f .4 from 5% -> 15% with no deterioration of T, or T,

« Additional electron source from argon alone cannot explain

increase in n,
Experimental observations supported by linear and
quasilinear transport analysis
 Stabilisation of ion- and electron-scale modes

* Reduced particle flux due to reduced diffusion and

increased inward pinch

—>poster by A. Sladkomedova — Wednesday 14:00

[ X ]

ot " e
‘e

© 2023 Tokamak Energy

1000 -
‘s 750+
—
E 500 -
S
&
Q- 250-
0 ! 1
0.00 0.05 0.10
t,s
0.4
[ ]
¢
0.3 -
J
S 0.2
-~
&
0.1 ?o
KN 2
0.0 -4
0

Ve, m/s

—— 11312, no Ar puff
—— 11314, Ar puff

11317, no Ar puff,

extra D puff

o—b-i--tll||||-ll---

by 2
.'o .
—50 ¢e
+
+
—100 - .
—150 4
e 11312
—200 - 4 11314
s 11317 .
—250 - | | |
0.4 0.6 0.8
WUn




Alfvénic instabilities transition from fixed to chirping frequency with

reduced microturbulence scattering

Nonlinear characteristics of Alfvénic instabilities
are important for determining fast ion losses

« STs — chirping/avalanching
« CTs —fixed -frequency

Transition from fixed to chirping response as Xi
decreases

e Modes identified as n=1beta-induced Alfvén
acoustic eigenmodes — BAAEs

* Criteria for chirping likelihood successful identifies
response

- poster by V. Duarte — Friday 14:00

e ©2023 Tokamak Energy

poloidal field

200 s

-
(&)
o

frequency (kHz)
3

50 4
0 L
< 150: T
a %1}
S Ofme—te
T -501
= _1501— S I O S B B SR RO
0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105
time (s)
4
(a)
o r/a=0.25
w2
E
= 11
0..
_1 T T T
0.02 0.04 0.06 0.08 0.10
t[s]

13
V. Duarte et al.,, NF 2023 J.Bland et al.,, NF 2022




ST40: Expanding the high  -field spherical tokamak physics basis for
fusion energy development

e Plasma exhaust

* Compact devices are expected to have high heat loads to walls, and mitigation strategies are necessary

* ST40 is studying scrape-off-layer width and heat exhaust properties in compact high-field ST
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Potential for scrape -offlayer width broadening in ST40 plasmas

e Predictive scenarios developed
using flight simulator coupled to
plasma control system.

* XGClsimmulations (PPPL) show
factor of 2-3 broadening above Eich
scaling at [, = IMA.

 First heat flux measurements with
divertor IR camera and Langmuir
probes taken. Work ongoing to
account for geometric effects.

- poster by S.Janhunen — Thursday 8:30
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ST40: Expanding the high  -field spherical tokamak physics basis for
fusion energy development

* Solenoid free start-up and ramp-up

» Several ST pilot plant concepts rely on RF H&CD for start-up and current sustainment

* Being high field, ST40 can access more representative operating conditions and demonstrate these schemes
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EBW and ECR start-up modelling shows potential for high current drive

e fficiencies

2ﬁd ECR

Z[m]

MW (104 / 137 GHz) gyrotron on order

ready for operations in 2025

Steerable midplane LFS launchers with

beam power splitter, and centre column O-X
mirror polariser

Enable development of non-inductive start-
up techniques and EC H&CD
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Generating significant current drive with
high efficiencies of 0.8 A/ W

E.du Toit et al., PPCF 2022
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ST40: Expanding the high  -field spherical tokamak physics basis for
fusion energy development

Recent scenario development and future plans
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Diverted H -mode and non-inductive scenarios recently developed
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ST40 future upgrades and operations
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Summary

ST40 is expanding the high  -field spherical tokamak physics basis for fusion energy development

Record ion temperatures of ~10keV demonstrated for first time the in compact device

ST40 is exploring confinement & stability at high toroidal fields
* Predictive capability developed with reduced and analytic transport models
» First look at confinement time dependence on ion mass showing strong scaling in hot -ion mode
» Argon seeding improved particle and energy confinement
» Turbulent suppression of chirping modes observed and chirping likelihood criteria validated
Potential for scrape -off -layer width broadening in ST40
* New divertor diagnostics enable first measurements of divertor heat flux

Operations with 1 MW gyrotron will develop non -inductive start -up and current drive techniques

» Predictions for EBW and LFS  -X1 start -up show high current drive efficiencies can be achieved
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ST40 and Tokamak Energy IAEA  -FEC contributions

Wednesday 18 * 14:00 poster session
EX-C-2145: A. Sladkomedova ef al., Impact of impurity injection on core confinement in ST40
Thursday 19 t* 8:30 poster session
TH-D-2412: S. Janhunen ef al.,, Assessment of the scrape off layer width and target heat loads in ST40
Thursday 19 t 14:00 poster session
TH-C-2293: M.S. Anastopoulos Tzanis  ef al., Validation of the TGLF model on ST40 ohmic and hot ion plasmas
TH-C-2251: A. Dnestrovskii  ef al., Predictive modelling of hot  -ion mode plasmas in ST40
TH-C-2268: A. Gibby ef al., GSFit: an open source, python based, equilibrium reconstruction algorithm
Friday 20 t 14:00 poster session
TH-W-2328: V. Duarte ef al.,, Turbulent suppression of bursty fast -ion -driven instabilities in high  -field ST40 experiments

EX-C-1900: S.M. Kaye efal., Transport and microinstability properties of high performance ST40 plasmas
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