

Systematic Review Summary of Various Extracts and Bioactive Compounds Potential in Increasing Radiation Efficacy in Human Cancer Cell Lines

SA GONDHOWIARDJO¹, AT. CAHYONO¹, A. TASLIM¹, TP PUTRI¹, HANDOKO¹, H. KODRAT¹, SM. SEKARUTAMI¹, E. NURYADI¹, TBM. PERMATA¹ , <u>DA.</u>

<u>WIJAYA¹</u>

¹Faculty of Medicine, Universitas Indonesia – Cipto Mangunkusumo National General Hospital – Jakarta, Indonesia

* Corresponding author: davidandiwijaya@gmail.com

Background and Objective

- Cancer cells radioresistance still leave a problem for radiation oncologist, and chemotherapy administration as radiosensitizer is a way to increase therapeutic ratio.
- Many of Indonesia rich biodiversity have shown in vitro and in vivo (animal) anticancer effect:
- Soursop (Annona muricata L.)¹
- Red algae (Eucheuma cottonii)³
- Bioactive compounds (piperine, 2 and gallic acid /3,4,5-trihydroxybenzoic acid 4).
- Nevertheless, there is still a lack of study observing role of them as radiosensitizer

Methods

Mixed method review:

- Systematic review to assess the pathways used by extract/compounds,
- Continued by literature review to analyse the effects of the pathway inhibition/activation to radiation.

On various cell lines:

- Annona muricata 20 studies, at least 10 related pathways to radiation, 3 opposite pathway¹
- Piperine 24 studies, 8 related pathways²
- Eucheuma cottonii 13 studies, 4 related pathways, 1 opposite pathway³

On prostate cancer cell lines:

Gallic acid, 11 relevant studies, 6 related pathways⁴

Results and Discussion

- Several substances activate/inhibit similar pathways in producing their anticancer effects.
- Among the most effective pathway that occupied by substances is cell cycle arrest, caspases, Bclfamily proteins pathway, and survival pathways.^{1,2,3,4}
- While referring certain pathways there is still inconsistency that reported by different studies (grey code).
- Annona muricata is among the substances that have been reported by many studies.
- There are still many rooms for research using Indonesian original plant extract

	Consistent data from primary studies
	Conflicting data from primary studies
	The substance will contrarily decrease radiosensitivity
	No report or studies on the substance regarding the pathway

		Extract / bioactive compounds			
Pathways th	at could lead to <u>radiosensitization</u>	Annona muricata	Piperine	Eucheuma cottonii	Gallic Acid
Increased reactive oxygen species (ROS) formation					
Cell cycle inh repair	ibition (G0/G1 and G2/M phase) and prevention of DNA				
Regulation of Bcl-2 family proteins					
Loss of mitochondrial membrane potential					
Activation of caspase 3/7 and caspase 9					
	Suppressed nuclear factor kappa-B(NF-kB) translocation			E. <u>cottonii</u> increases NF-kB	
	Downregulation of molecules related to hypoxia and glycolysis (HIF-1, GLUT1, HKIL, LDHA)				
	Downregulation of PI3K, Akt & ERK, mTOR				
Survival pathways	Downregulation of cyclin D1, (ERK1/2), and STAT3				
	Suppressed Hedgehog signaling				
	PD1/PDL-1				
	Suppresed PERK-eIF2α	A. muricata increases PERK-elF2α			
	Reduced proliferating cell nuclear antigen (PCNA)				
Immunomodulation					
	Migration prevention / anti-metastasis by Wnt-βcatenin inhibition				
Reduced Not	ch transmembrane protein	A. muricata increases Notch			
Reduced TNI	F-α	A. muricata increases TNF-α			

Conclusions

- Our mixed method review reveals radiosensitizing potential and helps sorting out extract / bioactive compound to undergo the next research steps.
- The substance with the most reported related pathways should be a good candidate for radiosensitizer.
- As a validation of our findings and a proper step of drug development, we suggest an in vitro study using human cancer cell line.

References

- 1. [Accepted manuscript] Wijaya DA, Louisa M, Wibowo H, Taslim A, Permata TB, Handoko, et al. Future potential of Annona muricata L. extract and its bioactive compounds as radiation sensitizing agent: proposed mechanisms based on systematic review. J Herbmed Pharmacol. 2021;10(1):x-x. doi: 10.34172/jhp.2021.xx.
- 2. [Submitted Manuscript] Taslim A, Wijaya DA, Louisa M, Handoko, Permata TBM, Kodrat H, et al. The potential role of piperine as radiosensitizer in cancer treatment. Indonesian J Pharm.
- 3. [Accepted Manuscript] Putri TP, Dewi IATK, Permata TBM, Nuryadi E, Kodrat H, Wibowo H, et al. A mini systematic review: Eucheuma cottonii, a red algae, as a radiosensitizer? Tropical J Natural Product Research.
- 4. [Accepted Manuscript] Cahyono AT, Louisa M, Permata TBM, Handoko, Nuryadi E, Kodrat H, et al. The potency of gallic acid as a radiosensitizer on human prostate cancer: A systematic review of preclinical studies. Malaysian J Med Health Sci