C. M. Bäcker^{a,b,c,d,*}, C. Bäumer^{b,c,d,e,f}, C. Behrends^{b,c,d,f}, K. Herrmann^{c,d,e,g}, W. Jentzen^g, S. Kazek^g, K. Kröninger^a, F. Spiecker^a, J. Weingarten^a, J. Wulff^{b,c,d}, B. Timmermann^{b,c,d,e,h} ^aTU Dortmund University, Experimental Physics IV, D-44221 Dortmund, Germany, ^bWest Germany, ^cWest Germ ^dUniversity Hospital Essen, D-45122 Essen, Germany, ^eGerman Cancer Consortium (DKTK), Heidelberg, Germany, ^eGermany, ^e Clinic for Nuclear Medicine, D-45122 Essen, Germany, ^hUniversity Hospital Essen, Clinic for Particle Therapy, D-45122 Essen, Germany,

Background and Objective

Proton beam range verification by positron emission tomography (PET) has been discussed in several publications in the past. As in off-line PET imaging, the activity in the tissue is subjected to the biological wash-out, implanted markers are supposed to avoid this limitation [1]. This study investigates the activation of titanium-based implants which are used in surgical resection prior to the proton therapy because of their biocompatibility and can be found especially in CT images of brain tumor patients.

Methods

The general potential of titanium implants for field verification has been demonstrated with the irradiation of a slanted angle phantom and a PET scan of the titanium sheet in a small animal PET [2].

Transfer to clinically geometries

- Using a human PET scanner (Siemens Biograph64 Vision600) for the activation study and scanning the complete phantom (not only titanium parts) while 4 h after irradiation
- Irradiation of the slanted angle geometry with two different proton fields
 - Quasi-monoenergetic field which stops inside the phantom (10 CGyE to the Bragg peak)
- 2. SOBP-like dose distribution on a cubic target volume (5 CGyE to the target volume)
- Irradiation of a second phantom with four dedicated implants (sheets) with a SOBP-like dose distribution to a virtual target volume (2 CGyE to the target volume)
- Irradiation of an anthropomorphic head phantom with one single proton field (2 CGyE to the virtual target volume)

Planning CT matched with a 4 h PET scan of an irradiated head phantom. The implants give a signal after 3 h (work in progress).

Slanted angle geometry with titanium sheet (black) in the PMMA phantom

References

[1] CHO, J. et al., Feasibility of proton-activated implantable markers for proton range verification using PET, Phys. Med. Biol. 58 (2013) 7497-7512. [2] BÄCKER, C.M. et al., Proton Beam Range Verification with Secondary Radiation from Titanium Implants, Proceedings of the 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference, Manchester (2019).

technische universität Development of proton range verification by use of titanium implants and PET

* Corresponding author: clausmaximilian.baecker@tu-dortmund.de

• Future steps: multiple treatment fields and sensitivity tests, Monte Carlo predictions of the activity (distributions)

