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Abstract 
 
The International Atomic Energy Agency (IAEA) must ensure the peaceful use of all nuclear materials with a budget 

that has been compared in size to that of the police department in Vienna. This includes, for example, coverage of nearly 
1,300 nuclear facilities spread around the globe and verification of over 200,000 significant quantities of nuclear material. 
The amount of information the IAEA collects is on an upward trajectory, and data overload is poised to be an ever-
increasing stress on the IAEA’s ability to perform its safeguards mission. Los Alamos National Laboratory (LANL) has been 
investing over the past several years in experimental studies within a number of its unique facilities to characterize activity 
patterns and operational modes using automated methods for disparate data integration. Building on the success of these 
preliminary studies, there is currently an effort funded by the Laboratory-Directed Research and Development (LDRD) 
Program at Los Alamos to develop a testbed at one of the laboratory’s radiological facilities for advancing this work, 
specifically aimed at safeguards-relevant data streams. The overarching goal of this work is to develop and experimentally 
validate methods to improve the efficiency and effectiveness of safeguards verification at nuclear facilities, which will allow 
the IAEA to better utilize the data it is already collecting. The paper describes work that has been completed to date as well 
as implications for future areas of research. 

1. INTRODUCTION 

The world is at an inflection point where our ability to collect data far outpaces our ability to make use of 
it, and the proliferation of sensors and so-called Internet of Things (IoT) is changing the way society uses data in 
profound ways. The International Atomic Energy Agency (IAEA) is fundamentally a data-driven organization, 
and the amount and complexity of data the agency collects to fulfill its safeguards mandate continues to grow 
[1,2]. The IAEA is taking proactive steps to modernize its information technology infrastructure [3] at the same 
time that unprecedented advances in data science and automation are transforming the technology landscape in 
commercial industry. The convergence of these enabling factors provides a catalyst for renewed focus on 
developing new tools and methodologies for improving the IAEA’s productivity. 

The objective of safeguards is to deter the spread of nuclear weapons through early detection of the 
misuse of nuclear material or technology. Increased use of continuous, unattended monitoring systems has 
opened the door for the IAEA to move beyond static signatures to characterizing dynamic activities in aggregate 
over time and space. The hypothesis of this work is that characterizing “normal” activity patterns in multisource 
data will provide a baseline for the IAEA to detect anomalies and give them enhanced capability to detect 
misuse or diversion of nuclear materials. The project pulls inspiration from modern smart home technologies 
and commercial IoT sensing and applies it to the challenge of monitoring and verification of nuclear facilities. 
Building off the idea that the whole is greater than the sum of its parts, the goal is to develop automated methods 
for combining disparate data streams representative of those collected by the IAEA to improve detection of 
undeclared activities at safeguarded facilities.  

The potential for this type of integrated analysis to improve facility monitoring has long been recognized. 
In the early 1990s, the Safeguards Group at Los Alamos developed a neural-network-based method called Video 
Time and Radiation Analysis Program (VTRAP) for identifying patterns and detecting anomalies in combined 
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containment and surveillance (C&S) and non-destructive assay (NDA) data [4]. While VTRAP was not 
operationalized at the time, technological advances in data storage and processing have dramatically improved 
the feasibility of implementing the underlying approach.  

More recently, Los Alamos has been investing in research to advance next-generation monitoring 
systems using the laboratory as a testbed [5,6]. As part of the initiative, our one-year project was targeted at 
building the experimental components of a testbed for safeguards technology. It required a multidisciplinary 
team of experts in areas such as NDA systems, distributed sensing, computer science, and machine learning. 
The project began in November 2017 and included the following tasks: 

 
— Design a sensor network for recognizing targeted activities; 
— Design the associated data management architecture; 
— Perform scoping measurements using available sensors; and 
— Conduct preliminary data analysis. 

 
The remaining sections describe progress to date as well as implications for future areas of research. As 

safeguards technology has evolved to meet new challenges over the past fifty years, one constant that has not 
changed is the central and indispensible role of highly-skilled IAEA analysts in reaching safeguards 
conclusions. Within that context, the aim of this research is not to replace the analysts with automation but to 
maximize their value by freeing more time for verification tasks that require subject-matter expertise, reasoning, 
and critical thinking. 

2. THE FACILITY 

The first step of the project was to evaluate candidate facilities for the testbed. The team chose LANL’s 
Safeguards Training Facility (TA-66) as the target facility based on a variety of attributes. Importantly, TA-66 is 
a Category 3 radiological facility. It includes office spaces, conference rooms, and a laboratory used for NDA 
training courses that feature hands-on nuclear material measurements [7]. Materials used regularly in the facility 
include, for example, cans of uranium, plutonium, and mixed uranium-plutonium oxide (MOX) as well as fresh 
fuel assemblies.  

Typical activities at TA-66 include general office work, seminars, preparation for NDA courses, and 
hosting NDA courses. TA-66 was chosen, in part, because the operational modes are relatively simple, allowing 
for a phased approach to developing methods. The goal is to minimize ambiguity in initial studies focused on 
demonstrating the fundamental concepts. If this is successful, the concepts and approaches can then be applied 
to facilities with more complex activities. 

3. DATA STREAMS  

The IAEA analyses data from State declarations, on-site inspections, fielded equipment, and other 
sources to draw its safeguards conclusions [8]. This project integrates data streams that are representative of 
those that the IAEA might collect for a typical nuclear facility. Specifically, the data streams include nuclear 
material inventory records, an NDA system, and a network of custom-designed sensors that serve as a proxy for 
surveillance data. 

3.1. Nuclear Material Inventory Records 

LANL’s Source Tracker software is used to monitor locations and quantities of nuclear materials [9]. It is 
akin to physical inventory listings provided through State declarations. The database logs transactions associated 
with nuclear material movements between material balance areas and buildings. For each transaction, it records 
information such as date and time of transaction, transaction type (e.g., check in, check out, transfer, etc.), 
location, source identification number, source activity, and material type (uranium, plutonium, MOX, etc.).  

Exploratory analysis comparing historical Source Tracker data to past training course schedules provides 
confidence that inventory records will serve as a rich data stream for characterizing activities at TA-66. For 
example, the total number of transactions per day is typically larger on course and course setup days compared 
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to other times. The daily temporal patterns of when transactions occur may also provide some differentiation 
between course and course setup days, with course days having a more structured and repeatable schedule than 
course setup days. Finally, the material type may provide finer granularity on course topics. 

3.2. Non-destructive Assay System 

NDA systems are used routinely by the IAEA for both quantitative and qualitative measurements of 
nuclear materials. We have installed an NDA system comprised of standard IAEA hardware and software in the 
TA-66 laboratory space to monitor neutron counts and material movements. The setup includes a 3He-based slab 
detector called the Portable Handheld Neutron Counter (PHNC) [10] with an Advanced Multiplicity Shift 
Register (AMSR) [11] for data acquisition. These components are paired with a standalone laptop running 
Multi-Instrument Collect (MIC) [12] for data collection in unattended mode. Data is pulled off the laptop 
manually at regular intervals. The system is currently setup to collect singles and doubles neutron counts every 
two seconds. This produces a continuous time series of neutron measurements as shown in Figure 1. 

 
FIG. 1. Sample data showing singles neutron counts as a function of time for a day with no activity (top), a course setup day 
(middle), and a course day (bottom). The series were smoothed with a Savitzky-Golay filter to reduce noise. 

3.3. Surveillance System 

Containment and surveillance (C&S) is highly complementary to nuclear material accountancy tools 
such as inventory records and NDA systems. It plays an important role in maintaining continuity of knowledge 
on nuclear materials between on-site inspections. Recognizing that recent advances in commercial sensing 
technologies may have implications for safeguards, as part of this work, we are exploring the possibility of using 
very low power, inexpensive sensors as an alternative to technologies like the IAEA’s Next Generation 
Surveillance System (NGSS) [13]. 

Leveraging capabilities developed as part of LANL’s stormwater runoff monitoring project [14], the 
team designed and built a set of custom sensor nodes for monitoring the general activity level in common areas 
at TA-66 such as entryways and the building’s large conference room. Each node consists of a RoboDyn 
microphone, Wingoneer light sensor, SenseHat with an inertial measurement unit (IMU) and environmental 
sensor for temperature and humidity, and a Raspberry Pi computer. Photographs of the individual components 
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and an assembled unit are shown in Figure 2. The total cost of components for each sensor node is less than 
$100, and we have installed seven of them at TA-66.  

 

 
FIG. 2. Photographs of the individual components of the surveillance sensors and an assembled sensor node. 
 
The sensor nodes can be deployed as standalone systems where data is collected manually from each 

node or as a wireless sensor network (WSN). Using wireless transmission, each node can send data directly to a 
wireless router that, in turn, sends data to the data collection computer where it is synchronized with a network 
time protocol (NTP) timestamp. Standard wireless security protocols such as Wired Equivalent Privacy (WEP) 
and Wi-Fi Protected Access (WPA or WPA2) allow for data encryption over the WSN.  

4. DATA MANAGEMENT  

The large volume and variety of data collected for this work demands a robust data management 
approach. Our goal was to design a data architecture that is easy to maintain and facilitates automation. The first 
step was to setup a centralized and secure collaborative workspace for the research team through a Git 
repository on one of LANL’s internal networks. Git is a version control system for tracking changes to 
documents or source code and coordinating work among multiple contributors to a project. The Git repository 
contains a number of Python scripts and Jupyter notebooks generated for the project to automatically clean the 
various types of raw data files (i.e., parsing data files and removal of corrupt entries or fields that are irrelevant 
for analysis).  

The cleaned data is uploaded to a NoSQL MongoDB database [15] using a representational state transfer 
application programming interface (REST API). MongoDB does not come with a RESTful API, so that 
functionality is provided by the Python Eve Framework [16]. The database is accessible on LANL’s Darwin 
supercomputer for data processing and analysis, and it resides in a team share folder that requires user 
authentication for access control. 

5. PRELIMINARY RESULTS 

The dataset we used for preliminary analysis consists of fifteen weeks of concurrent neutron detector and 
Source Tracker data. Five courses were held at TA-66 during this period. While most of the courses are similar, 
there are some notable differences in duration and content between courses. The extreme example includes one 
course in our test dataset on statistics that did not include any nuclear material measurements. These variations 
provide realistic conditions for quantifying the sensitivity of approaches to perturbations that are difficult to 
replicate in simulations or synthetic data. 

For the purpose of this analysis, we consider three classes of activities for a given day: (1) course days, 
(2) course setup days, and (3) no activity days (i.e., weekends and all other workdays). In order to build basic 
classification models, we reduced the dimensionality of the raw data. To do this, we first extracted features from 
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the data. This entails deriving a set of characteristics from a time-series distribution to represent the whole 
sequence. In the case of the neutron data shown in Figure 1, we extracted basic descriptive features such as the 
mean, standard deviation, skewness, minimum, and maximum. We also considered features that describe the 
spiked and highly-concentrated nature of the signals such as entropy, the high-frequency Fourier power, the 
fourth moment, and the number of data points above a relative threshold. Finally, we added features we found to 
be descriptive of the unique characteristics of the classes, like the dip in signal during the typical lunch break. 
Each of these features compresses a full day distribution into a single value that can be used for classification. 
Because the Source Tracker data is much more sparse than the neutron data, the features represent values 
contained in the logs aggregated over each day (e.g., total number of transactions involving plutonium sources). 

Dimensionality reduction techniques were then used to visualize relationships in the feature space to 
illustrate how useful the features are in separating out the three classes. Canonical correlation analysis (CCA) is 
a technique for dimensionality reduction that resulted in better discrimination between classes than the more 
common principal component analysis (PCA) technique. Instead of maximizing internal variance within a single 
dataset, CCA maximizes the correlation between two different datasets, which maximizes the separability by 
correlating the features with a one hot encoding of the labels. The results are shown in Figure 3. The plot shows 
good distinction between the days with no activity versus course and setup days. The course days that appear in 
the cluster of no activity days represent the statistics course where no nuclear material was used, which aligns 
with expectations for these two datasets. The separability between setup and course days is less distinct but 
shows promise for preliminary results. 

 
FIG. 3. Canonical correlation analysis (CCA) of the neutron detector and Source Tracker datasets. 

 
 Once the feature space was built up, the next step was to perform proof-of-concept testing with a variety 
of classification models to explore their utility to the facility monitoring problem. In machine learning, 
classification techniques are used to learn a function that maps input parameters (e.g., neutron and Source 
Tracker data) onto known outputs (e.g., course, setup, or no activity days) so that as new data is collected, we 
can accurately predict the state of operations. We explored a range of models including support vector machine 
(SVM), decision tree classifier, random forest, and nearest neighbors in the CCA subspace. Confusion matrices 
were calculated to show the disaggregated accuracies found by cross validation of the models for each 



 IAEA-CN-267 

  
 

 
 

classification scenario. These are shown in Figure 4. Each confusion matrix shows the prediction probability for 
each prediction versus true label pair. The results further demonstrate how much easier it is to distinguish 
between activity versus no activity days than course versus setup days using only the neutron and Source 
Tracker data.  

 
FIG. 4. Confusion matrices for the four classification models tested using the feature space for the neutron detector and 
Source Tracker datasets. 
  

The feature space we calculated is essentially independent of time. We used a tool called Matrix Profile 
[17] to explore some of the temporal information contained in the data. For the time series analysis, we only 
considered data from the neutron detector. Matrix Profile uses a technique called all pairs similarity to identify 
recurrent temporal patterns between days. These patterns are used to build representative signatures called the 
Matrix Profile Index for each category in the classifier. Figure 5 shows the Matrix Profile Index for our no 
activity day, course day, and setup day categories. These signatures show distinct peaks for the separate classes 
and show promise of more time-dependent models in future work. 
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FIG. 5. Matrix Profile Index aggregate category distributions for no activity days (top), course days (middle), and setup 
days (bottom).  

6. CONCLUSIONS  

Characterizing activity patterns through the integration of disparate data streams has the potential to 
provide the IAEA with enhanced capability to detect misuse and diversion within safeguarded facilities. This 
approach would represent a paradigm shift from a focus on the known to discovery of the unknown. The 
primary outcome of this work was development of the experimental infrastructure necessary to support research 
in disparate data integration for advanced facility monitoring. Encouraging results from exploratory data 
analysis using supervised machine learning methods and time series analysis showcased the feasibility of using 
classification models with safeguards-relevant data streams. Preliminary results provide confidence that accurate 
models for activity characterization under realistic operational conditions can be developed. Building on 
successes and lessons learned in the first year of the project, follow-on studies will focus on continuing to 
improve the data collection and management architecture in parallel with improvements to predictive models. 
The aim is to create a feedback loop between data scientists and subject-matter experts in relevant safeguards 
technologies to design concepts and approaches that are optimized for the application.  

In the short term, integration of data from the surveillance sensors installed at TA-66 into the data 
analysis is expected to improve model accuracy significantly. Based on the preliminary results, further 
exploration of how to leverage temporal signatures also shows great promise. Unsupervised machine learning 
techniques and anomaly detection are also natural offshoots of this work to enhance detection of undeclared 
activities.  

The longer-term vision for this work is to provide the IAEA with decision support tools to increase 
productivity and to help deter would-be proliferators through the threat of early detection. The aim of our 
integrated approach is to allow the IAEA to do more with the data they are already collecting by leveraging 
advances in data science as a force multiplier for complex problems. 
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