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Abstract. The paper presents a summary review of the most important experiments performed in the BOR-60 
reactor on transmutation of minor actinides and isotopic composition of high burnup nuclear fuel: 

− testing of fuel elements and fuel assemblies with different nuclear fuels, 

− behavior of irradiated nuclear fuel at achievement high burnup, 

− plutonium burning and transmutation of minor actinides. 

A comparative analysis has been done with reference to the BOR-60 operating reactor and the MBIR reactor 
under construction in terms of their main design parameters and neutronics that affect the capabilities to perform 
experiments on transmutation of minor actinides. 
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Introduction 
 
Fast reactor BOR-60 is one of the world’s leading research reactors in large-scale testing of 
fuel elements, FA and control rods of different designs as well as advanced fuel compositions 
and structural materials, testing of closed nuclear fuel cycle technologies, transmutation of 
minor actinides, and disposal of plutonium. BOR-60 is a unique experimental reactor with a 
neutron spectrum ranging from the hard one in the core to the intermediate one in the lateral 
blanket, and a high neutron flux density values (Fn) [1]. There is a possibility to carry out 
experimental research in the BOR-60 blanket in a softened neutron spectrum with the use of 
moderating assemblies [2].  

 
1. BOR-60 experimental capabilities 
 
Table I presents the main BOR-60 parameters. 

TABLE I. BOR-60 MAIN PARAMETERS. 
Parameter Value 

Thermal power, MW up to 60 
Sodium flow rate through the reactor, m3/h up to 1200 
Sodium velocity in the core, m/s up to 8 
Coolant temperature, ºC: 

- reactor inlet 
- reactor outlet 

 
310÷340 
up to 540 

Standard fuel UO2 or UO2-PuO2 
Enrichment in U-235,% 45÷90 
Max Pu content,%  30 
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Max volumetric heat rate, kW/l 1100 
Max neutron flux density, cm-2s-1 3.5·1015 
Average neutron energy, keV: 

- core 
- blanket 

 
150÷400 
1*÷100 

* – in the cell surrounded by zirconium hydride 
 

In BOR-60 the assemblies are arranged in a hexagonal grid. The number of the cells totals to 
265 (see FIG. 1.). Up to 156 cells are provided for FA, 7 cells – for control rods, and the 
remaining positions are loaded with blanket assemblies (breeding and/or steel). The number 
of FA loaded in the reactor during its operation has ranged from 75 to 128 depending on 
nuclear fuel (NF) burnup and properties, core arrangement and experimental rigs. 
Experimental assemblies can be loaded in any position except for the cells intended for 
control rods. 

 
FA – standard FA,  EFA – experimental FA,  CR – control rods, 

EMA – experimental material assemblies,  BA – blanket assemblies, ZrHx – moderating assembly 
FIG. 1. BOR-60 core arrangement (2014). 

 
The BOR-60 reactor has four horizontal experimental channels and nine vertical experimental 
channels behind the reactor vessel with a rather high neutron flux density. These channels are 
used mainly for irradiation of electrical engineering materials and doping of silicon [3]. 

The reactor design enables variations of the core dimensions in a wide range. A large number 
of experimental assemblies can be loaded in different reactor cells, and Fn in some cells can 
differ by three times. BOR-60 has an instrumented position (D23) which provides for online 
data display. The main neutronic parameters in several cells are given in Table II [4]. 
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FIG. 2 shows radial distribution of Fn and fast neutron flux density (En>0.1 MeV), (Fn0.1) in 
the core mid-plane (CMP), and average neutron energy (En). 

 
TABLE II. NEUTRONICS IN BOR-60 CELLS. 

Cell, row E31, 1 A43, 3 D23, 5 D35, 8 
Cell center radius relative to the core, mm 45 135 196 360 

Max neutron flux density, 1015 cm-2s-1: 
- En > 0.0 MeV (Fn) 
- En > 0.1 MeV (Fn0.1) 

3.4 
2.8 

3.1 
2.5 

2.5 
2.0 

1.2 
0.6 

Damage dose accumulation rate in steel (DPA), 10-6 dpa/s 1.4 1.3 1.0 0.2 

Axial peaking factor in the core, relative units 
Fn 1.15 1.16 1.15 1.12 

DPA 1.18 1.18 1.18 1.16 

Radial peaking factor in the CMP, relative units 
Fn 1.00 1.05 1.09 1.13 

DPA 1.01 1.06 1.11 1.31 
Neutron flux density fraction: 
- En>0.1 MeV, relative units 
- En>0.8 MeV, relative units 

 
0.83 
0.30 

 
0.82 
0.28 

 
0.80 
0.25 

 
0.50 
0.07 

Average neutron energy, keV 350 320 250 40 

Neutron fluence *, 1022cm-2 /year 
En>0.0 MeV 6.1 5.5 4.5 2.1 
En>0.1 MeV 5.1 4.5 3.6 1.1 

Max damage dose in steel *, dpa/year 26 23 19 4.4 
* – 1 year of irradiation - WT≈ 275 GWh 

 

 
FIG. 2. Radial profiling of the BOR-60 main neutronic parameters. 

 
FIG. 3 and FIG. 4 show normalized neutron spectra in the core and lateral blanket. FIG. 4 
presents a normalized neutron spectrum in cell G01 when it is surrounded by moderating 
assemblies (zirconium hydride). 
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FIG. 3. Neutron spectra in the BOR-60 core (row, cell). 

 

 
FIG. 4. Neutron spectra in the BOR-60 lateral blanket (row, cell). 

 
2. Experiments performed in BOR-60 
 
Since BOR-60 commissioning large-scale experiments have been performed there including 
irradiation testing of different reactor materials and fuel compositions. The highlights include 
irradiation programs in the following trends: 

- testing of fuel elements and FA with different nuclear fuels, 
- achievement of high fuel burnup (up to 34 % heavy atoms (h.a.)); 
- Pu burning and transmutation of minor actinides. 
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2.1. Burnup and isotopics of irradiated nuclear fuel 
 
Particular attention in RIAR is traditionally paid to experimental research of isotopic 
composition and behavior of irradiated nuclear fuel at high burnup. FA with different nuclear 
fuels were tested (oxide, metal, metal-ceramic, carbide, nitride; pellet and vibropac) with a 
burnup achieving 27 % h.a. Comprehensive research was performed to determine the 
isotopics including actinides and fission products in a FA, specific fuel elements, and 
samples. Thorough calculations, experiments and analysis are carried out on irradiation 
conditions of the fuel elements and FA under testing (RIAR has a balanced set of qualified 
and verified computer software and methods the modifications of which have been applied for 
considerable time). Nuclear fuel irradiation parameters and isotopics were obtained with the 
use of different computer codes and constants as well as by applying radiochemical methods 
and mass spectrometry. On several fuel elements the maximum burnup of 34 % h.a. was 
achieved. 

The discrepancies between the calculated and experimental values normally do not exceed 5% 
for U, 10% for Pu, the nuclear fuel burnup being 0.7÷2.5 %. There is a good agreement for 
Am-241 (3÷7%), Cm-242 (6%), and Cm-244 (5%) [5, 6]. 

 
2.2. Burning and transmutation of actinides 
 
Plutonium burning, transmutation of actinides, and irradiation of nuclear fuel containing Np 
[7] and Am [8] were performed under the program on testing closed nuclear fuel cycle 
technologies. 

Numerous experiments on thorium-related issues have been performed in RIAR. Thorium 
was irradiated to obtain the average neutron cross-sections and U-233 breeding rate, as well 
as to test the fresh fuel fabrication and spent thorium-based fuel reprocessing methods. 
Thorium was irradiated in BOR-60 as fuel elements, samples and capsules. 

Calculations, experiments and analysis of the isotopics were performed for the capsules 
containing different actinides (Th-232, Np-237, Pu-239, Pu-240, Pu-242, Am-241, Cm-243, 
and Cm-244) irradiated in BOR-60 [9]. The capsules were arranged along the height of two 
fuel elements (8 pcs.) in an experimental dismountable FA. 

 
3. Experimental capabilities of BOR-60 and MBIR  
 
The given data show that BOR-60 has been used intensively and continues to be operated as 
an experimental and research facility. There are long-term R&D programs under international 
contracts and projects with funds from the federal target program on nuclear power 
technologies of the new generation. There are numerous contracts for BOR-60 that will be 
effective for the next few years. The research carried out in BOR-60 will continue up to its 
decomissioning. 

At present, RIAR has a license for BOR-60 operation up to 2020, and the work is being 
carried out to prolong its operating lifetime beyond 2020. By the end of its lifetime the federal 
target program on nuclear power technologies of the new generation in 2010–2015 and until 
2020 envisages construction of a multipurpose fast research reactor (MBIR). The MBIR 
reactor is intended to replace BOR-60 after its final shutdown [10] meeting the demands in 
research of different reactor designs. The MBIR design provides wider experimental 
capabilities compared to BOR-60 that enable different irradiation tests. MBIR will have three 
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instrumented cells (similar to D23 in BOR-60) spaced at a different distance from the core, 
and three loop channels with an isolated coolant circuit (Nа, liquid heavy metal coolant, 
molten salts, gas). The loop channels (with one of them in the core and two in the lateral 
blanket) will occupy the area of seven cells. They will provide online monitoring of the 
experimental parameters. FIG. 5 shows MBIR core arrangement. The irradiation volume of 
each cell is increased by more than three times compared to BOR-60 cells, which will also 
increase significantly the reactor experimental capabilities [11]. 
 

 
FIG. 5. MBIR core arrangement. 

 
The MBIR main parameters affecting transmutation of minor actinides are as good as those of 
BOR-60: max neutron flux density makes up ~ 5.2×1015 cm-2×s-1. The average neutron energy 
varies in the core up to 600 keV, and in the lateral blanket – up to 100 keV. FIG. 6 and FIG. 7 
illustrate the comparison of BOR-60 in its current state and MBIR potential in terms of radial 
distributions of their main neutronic parameters in the core mid-plane affecting transmutation 
of minor actinides [11]. FIG. 8 shows normalized neutron spectra in different parts of BOR-
60 and MBIR. 
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FIG. 6. Radial distribution of the neutron flux density in the CMP of BOR-60 and MBIR. 
 

 
FIG. 7. Radial distribution of the neutron flux density in the CMP of BOR-60 and MBIR 

(En>0.1 MeV). 
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FIG. 8. Neutron spectra in different parts of BOR-60 and MBIR. 

 
The MBIR reactor being constructed at the RIAR site will have wider experimental 
capabilities that will enable promptly conveying all operational and research experience 
gained in BOR-60. Thus, long-term research programs launched in BOR-60 will be 
completed in MBIR [11]. Moreover, such long-term programs are currently being 
implemented. 

 
Conclusion 
 
The BOR-60 reactor has unique parameters to carry out experimental research in different 
trends including transmutation of minor actinides. 

The systematization and analysis of the performed experiments as well as new specifying 
calculations will allow improving significantly the reliability in showing the feasibility of 
actinide transmutation depending on the neutron spectrum, different fuel cycles and promising 
trends of nuclear reactor development. 

The research launched in BOR-60 may be continued in the MBIR reactor that will have wider 
experimental capabilities. 
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