The UO₂– MeO₂ (Me = Th, Pu, Zr) cathode crystalline deposits formation during the melts electrolysis

V. Ye. Krotov^a, Ye. S. Filatov^{a,b}

^a Institute of High-Temperature Electrochemistry, Ural Branch of RAS, Akademicheskaya 20, Yekaterinburg 620137, Russia
^b Ural Federal University, Mira st.19, Yekaterinburg 620002, Russia
Corresponding author. Tel.: +7 343 362 31 36; fax: +7 343 374 59 62

E-mail address: vekro@ihte.uran.ru (V. Ye. Krotov)

Abstract

The crystalline UO₂-ThO₂ (30-50 mol. %), UO₂-PuO₂ (6 - 72 mol. %), UO₂-ZrO₂ (0.1 - 98 mol. %) cathode deposits were obtained at the electrolysis of the (NaCl-KCl)-UO₂Cl₂-MeCl₄ melt, where Me=Th, Pu, Zr. The mechanism of their formation was analyzed. The influence of the MeCl₄ concentration in the melt and the initial electrolysis current density on the average MeO₂ concentration in the UO₂-MeO₂ cathode deposits was studied. The MeO₂ fraction concentration decreased consistently as the MeCl₄ concentration decreased and the electrolysis current density increased. The electrolytic crystalline UO₂-MeO₂ cathode deposit is formed by two simultaneous reactions at the electrode: electrolytic reduction of UO₂²⁺ to UO₂ and exchange reaction between UO₂ and Me⁴⁺ ions, which are present in the molten (NaCl-KCl) -UO₂Cl₂-MeCl₄ electrolyte.

Keywords: molten salt electrolyte, cathode deposit, UO₂-MeO₂ (M=Zr, Th, Pu) system, quantitative composition, structure

1. Introduction

The UO₂ – ZrO₂, UO₂ – ThO₂ and UO₂ – PuO₂ systems are used as a fuel for nuclear reactors [1]. The latter are of especial interest for the fast-neutron reactors, as large deposits of uranium-238 and thorium are included into the fuel cycle. It is known that uranium dioxide is deposited from the halide melt at the cathode and its density is 10.85 [2], 10.85-10.90 [3] and 10.92 ± 0.04 [4] (g/cm³), which is close to the value of the individual dioxide equal to 10.96 [5] (g/cm³). The electrolytic method of the UO₂ – MeO₂ crystals formation on the cathode in molten salts allows obtaining cathode products, which density is close to the theoretical one. Previously, we have studied the cathode deposits of the UO₂ – ZrO₂ heterogeneous system at the (NaCl-KCl)-UO₂Cl₂-ZrCl₄ melt electrolysis and the mechanism of their formation has been

suggested [6-9]. They are formed at the simultaneous reactions of the UO_2^{2+} ions reduction to UO_2 and exchange between UO_2 and Zr^{4+} ions, which are present in the salt phase.

The present work analyzed of the possibility to electrocrystalize of homogeneous $UO_2 - ThO_2$ and $UO_2 - PuO_2$ deposits including detection of the maximum content of thorium and plutonium dioxides in these systems. The $UO_2 - MeO_2$ cathode deposits formation mechanism, influence of the electrolysis current density and MeCl₄ concentration in the (NaCl-KCl)-UO₂Cl₂-MeCl₄ (Me = Zr, Th, Pu) electrolyte on the deposits structure and composition are studied.

2. Mechanism of the UO_2 – MeO_2 cathode deposits formation

 $UO_2^{2^+}$ uranyl ions are the most electropositive components of the salt phase (NaCl-KCl)-UO₂Cl₂-MeCl₄. As the current passes through the melt the individual phase of uranium dioxide UO₂ is first extracted at the cathode as the result of the UO₂²⁺ uranyl ions reduction

$$UO_2^{2+}(melt) + 2e^{-} = UO_2(s)$$
 (1)

This process takes place at the potential of ~ - 0.6 V (relatively to the chlorine reference electrode) [10, 11]. The electrolysis is carried out at the current densities, which do not exceed the limiting diffusion $UO_2^{2^+}$ ions current. The Zr, Th and Pu extraction potentials are significantly more negative than -0.6 V [12, 13]. That is why zirconium, thorium and plutonium do not appear in the cathode deposit at the electrolysis due to the reduction reaction to their atomic state.

However they appear in the cathode product according to the exchange reaction (2) between the Me (IV) ions, which are present in the molten salts, and uranium dioxide after the formation of the first crystals at the cathode

$$UO_{2 (s)} + xMe^{4+}_{(melt)} = (1-x)UO_{2} \cdot xMeO_{2} (s) + xU^{4+}_{(melt)}$$
(2)

In fact cations, as shown in equations (1) and (2), are present in the melt as $[UO_2Cl_4]^{2-}$, $[ZrCl_6]^{2-}$, $[UCl_6]^{2-}$, $[UCl_6]^{2-}$, and $[PuCl_6]^{2-}$ complex ions [12]; thus, they should be considered in the reaction schemes that define the cathode processes.

Equations (1) and (2) demonstrate the initial stage of the formation of the solid UO_2 -ZrO₂ solution at the electrode under a current load. Then UO_2 crystallizes at the surface of the generated solid (1-x)UO₂·xZrO₂ solution and uranium dioxide is included in the crystalline lattice. This process is described by equation

 $(1-x)UO_{2} \cdot xMeO_{2 (s)} + yUO_{2}^{2+}(melt) + 2ye \rightarrow (1-x+y)UO_{2} \cdot xMeO_{2 (s)}$ (3)

The uranyl ions reduction is accompanied by the depolarization [6,11]. The presence of depolarization and appearance of the U^{4+} ions in the melt according to the exchange reaction

between the Me⁴⁺ ions and UO₂ in the (NaCl-KCl)-UO₂Cl₂-ZrCl₄ system under the cathode polarization were experimentally proved [11].

The reduction reaction and the exchange reaction, in which Me^{4+} ions interact with uranium dioxide at the surface layer of the growing cathode deposit and not with the individual UO_2 phase, proceeds simultaneously. This concurrent process of exchange and reduction reactions at the cathode is described by equation

$$xMeO_{2} (1-x)UO_{2(s)} + yUO_{2}^{2+}(melt) + mMe^{4+}(melt) + 2ye \rightarrow$$

$$\rightarrow (x+m) MeO_{2} (1-x+y-m)UO_{2(s)} + mU^{4+}(melt).$$
(4)

Thus, Eq. (4) is a basic equation, which illustrates the mechanism underlying of the UO₂ - MeO₂ deposit formation at the cathode during electrolysis.

3. Quantitative composition of the UO₂ – MeO₂ cathode deposit

The quantitative composition of the cathode deposit depends on the ratio of electrochemical (1) and chemical (2) reaction rates.

The rate of electrochemical reaction (1) is determined by the electrolysis current density. The rate can be easily changed by varying current during the electrolysis. Clearly, larger electrolysis current densities yield higher UO_2 and lower MeO_2 concentrations in the cathode deposit under otherwise equal conditions.

The rate of exchange reaction (2) is limited by the diffusion of Zr^{4+} ions from the melt bulk to the surface of the cathode deposit. According to Fick's law, diffusion rate is proportional to the zirconium ion concentration in the electrolyte bulk; when diffusion rate is greater, the MeO₂ concentration is higher and the UO₂ concentration is lower in the cathode deposit.

The composition of the $UO_2 - MeO_2$ cathode deposit depends on the ratio of electrochemical (1) and chemical (2) reaction rates. The deposits with different oxide concentrations can be generated on the cathode when the reaction rates vary. In addition, the maximum MeO₂ concentration in the cathode deposit can be determined according to thermodynamic reaction (2). As an initial approximation, a change in the Gibbs energy and the apparent conditional equilibrium constant K^* for this process can be evaluated using data in literature if zirconium, thorium, and plutonium is assumed to completely substitute for uranium in UO₂ using equation

$$UO_{2(T)} + Me^{4+}_{(pacnn)} = MeO_2 + xU^{4+}_{(pacnn)}$$
(5)

for which

$$K^* = K \bullet \gamma_{MeCl_4} / \gamma_{UCL_4} = [UCl_4] / [MeCl_4]$$
(6)

3

where γ is the activity coefficient with constant value when the component concentration do not exceed 5 mol. % [12]

The thermodynamic data used for individual uranium, zirconium, thorium and plutonium oxides were reported in [14]. The values of the solutions diluted in the electrolyte were used as the values of tetra halides [12]. The values of K^* in the molten equimolar NaCl – KCl mixture with participation of zirconium, thorium and plutonium tetrachlorides at 1000K were equal to 91, 2.8 and 100, respectively. The equilibrium is seen to be shifted to the right. The values of K^* for the ZrO₂ and PuO₂ systems were found to be 30 times larger than that for the ThO₂ system. The values of K^* allowed evaluating the maximum concentrations of zirconium, thorium and plutonium dioxides in the UO₂ – MeO₂ cathode deposit. It was proved that the ThO₂ concentration may reach ~ 75 mol. %, and ZrO₂, PuO₂ concentrations are nearly 100 mol. %.

4. Experimental

 $UO_2 - MeO_2$ cathode deposits were received under galvanostatic conditions in a hermetic test electrolyzer, which was constructed from quartz and filled with helium. A Pt wire with a diameter of 1 mm was immersed 12 mm deep into the melt (S = 0.4 cm²) and served as the cathode. A carbon electrode was separated from the electrolyte by a porous asbestos diaphragm and served as the anode. The electrolyzer, the electrolyte technique, and the method for analyzing the salt phase have been described elsewhere [7,9]. The amount of electricity consumed for one deposit was constant for each test and was 0.25 A·h. The mass of the electrolyte was approximately 100 g. The obtained cathode deposits were studied by chemical, X-ray phase analysis and X-ray spectral microanalysis.

5. Results and discussion

5.1. Influence of the MeCl₄ concentration

The influence of the MeCl4 concentration was studied at UO_2 -ZrO₂ cathode deposit formation during (NaCl-KCl) - UO₂Cl₂-ZrCl₄ melt electrolysis. The ZrCl₄ concentration in the melt was varied from 0.1 to 12.3 wt. %.

Figure 1 shows the dependence of the average ZrO_2 concentration in the ZrO_2 -UO₂ cathode deposit on the $ZrCl_4$ concentration in the molten electrolyte.

As expected, the average ZrO_2 concentration in the cathode product increased as the $ZrCl_4$ concentration in the molten salt increased. The increased rate of the exchange reaction (2) and the corresponding increase in zirconium concentration, which transfers to the oxide phase

during electrolysis under otherwise equal conditions, results in the increasing ZrO_2 content in the cathode deposit and the increasing $ZrCl_4$ concentration in the electrolyte.

5.2. Influence of the electrolysis current density

The influence of the electrolysis current density was studied at UO_2 –ZrO₂ and UO_2 –ThO₂ cathode deposits formation. The initial electrolysis current density was varied from 0.04 to 0.63 A/cm² at a fixed molten salt composition.

In each case, the MeO₂ concentration in the UO_2 -ZrO₂ and UO_2 -ThO₂ cathode deposits decreased as the electrolysis current density increased. Figure 2 shows the typical change in average zirconium and thorium dioxides concentration for the solid phase.

The ZrO_2 and ThO_2 concentrations in the cathode deposits decreased as the electrolysis current density increased because the rate of the UO_2^{2+} ions reduction to UO_2 increased. Thus, the UO_2 fraction in the cathode deposit and the cathode deposit weight increased under otherwise equal conditions, whereas the zirconium and thorium dioxides concentration decreased. The thorium dioxide content equal to 50 mol. % is the maximum. As the electrolysis initial current density decreased from 0.08 to 0.04 A/cm², the ThO₂ concentration in the oxide phase was expected to increase as the rate of the electrochemical reaction decreased. However, the cathode deposit composition remained unchanged. In this case only a half of uranium dioxide was changed by thorium dioxide, which we assume to be due to the thermodynamics of the exchange reaction between UO2 and thorium tetrachloride.

The results obtained agree with the literature data on the exchange reaction between UO_2 and Th^{4+} ions in the chloride media [15].

5.3. Structure and phase composition of the UO_2 -MeO₂ cathode deposits 5.3.1. UO_2 -ZrO₂ cathode deposits

The UO_2 – ZrO_2 cathode deposits, which contained up to 98 mol. % ZrO_2 , were formed. From one to three phases were detected in the deposits depending on the uranium oxide and zirconium concentrations: a cubic phase based on UO_2 , a monoclinic phase based on ZrO_2 , and tetragonal phase based on ZrO_2 . The uranium and zirconium concentrations in these three phases were defined using the Camebax electron probe microanalyzer (Table 1).

Table 1

Phases in the UO₂-ZrO₂ system and UO₂ and ZrO₂ concentrations in them

Concentration, mol.%

Phases		ZrO_2		UO ₂		
	Our data	Literatu	ıre data	Our data	Literature data	
		[17,18]	[19]		[17,18]	[19]
Cubic	0-5	0-15	0 - 10	95 - 100	85-100	90 - 100
Tetragonal	73 – 77	86-97	~ 80	23 - 27	3-14	~ 20
Monoclinic	85 - 90	97 - 100	~ 90 - 100	10 - 15	0-3	~ 0-10

5.3.2. $UO2-ThO_2$ cathode deposits

The UO_2 -ZrO₂ cathode deposits, which contained up to 50 mol. % ThO₂, were formed. The ThO₂ concentration of 50 mol.% is maximum under our experimental conditions. All deposits were found to be crystalline, single phase cubic solid UO_2 - ThO₂ solutions. Their crystalline lattice parameter increased naturally as the average concentration of thorium dioxide in the cathode deposit grew.

In the oxide phases containing less than 50 mol. % of ThO_2 , the ThO_2 concentration at first increased in direction from the inner layers to the outer ones and when the maximum concentration of 50 mol. % was reached it remained unchanged.

The increase in the ThO2 concentration in the oxide phase (Fig. 3a) is due to the changes in the ratios of reduction and exchange reactions during the electrolysis. The experimentally found uranium and thorium distribution in the cathode deposit in the direction from the inner layers to the outer ones proves that the reduction reaction rate decreases faster than that of the exchange reaction.

In the cathode deposits containing 50 mol. % of UO_2 and 50 mol. % of ThO_2 the uranium and thorium radiation intensities were close and remained constant. Their values correspond to Fig. 3**b**.

5.3.3. UO_2 -Pu O_2 cathode deposits

 UO_2 -PuO₂ cathode deposits were formed under chlorine atmosphere to preserve Pu (IV) in the melt. The equimolar NaCl-KCl, NaCl-CsCl and eutectic LiCl-KCl mixtures served as solvents. The UO_2Cl_2 and plutonium chloride concentrations in them were about 6 and 2 mol. % respectively. Two cathode deposits were subsequently formed using the same original electrolyte. Table 2 presents the electrolysis conditions and its results.

Table 2

Electrolysis conditions and UO2-PuO2 cathode deposits composition

Solvent	Deposit	Τ,	i,	Time,	PuO ₂ ,	Phase	Lattice
		⁰ C	A/cm^2	h	mol.	composition	parameter
					%		UO_2 – PuO_2 ,
							$m \cdot 10^{8}$
NaCl-KCl	1	730	0,07	6	72	PuO ₂	5.465
	2		0,06	3	42	UO_2 – PuO_2	± 0.001
NaCl-CsCl	1		0,07	6			
	2	550	0,06	3	≈ 6	UO_2 – PuO_2	5.4655
LiCl-KCl	1		0,07	6			± 0.0006
	2		0,06	3			

6. Conclusion

1. The mechanism of the UO_2 -MeO₂ cathode deposits electrocrystallization at the halide (NaCl-KCl) -UO₂Cl₂-MeCl₄ melt electrolysis, where Me=Th, Pu, Zr, was analyzed. Deposits were found to form as the results of the simultaneous reactions of the UO_2^{2+} ions electrolytic reduction to UO_2 and the exchange between UO_2 and Me⁴⁺ ions, which are present in the molten electrolyte.

2. The MeO_2 fraction in the UO_2 -MeO₂ cathode deposits was seen to decrease naturally as the $MeCl_4$ concentration decreased and the current density increased.

3. The UO₂-ZrO₂ (0.1 - 98 mol. %), UO₂-ThO₂ (30 - 50 mol. %), UO₂-PuO₂ (6 - 72 mol. %) crystalline cathode deposits were obtained.

4. The chemical and phase compositions of cathode deposits were determined.

References

- A.G. Samoilov, A.I. Chestnut, V.S. Volkov, The dispersion fuel elements of nuclear reactors, M, Atomizdat (1965) 270 p.
- [2] I.R. Chalkley, The pilot plant production of electrolytic uranium dioxide, J. Less-Common Metals. 3 (1961) 98-109
- [3] M. Schlechter, J. Kool, R. Billian, R.A. Charlier, G.L. Dumont, The preparation of UO_2 by fused salt electrolyses using or UF₄ as starting material, J.Nucl. Mater. 15 (1965) 189-200
- [4] B. Eichler, Herstellung von grobkristallinem UO₂ hoher Dichte durch elektrochemische Reduktion von UO₂Cl₂ in KCl-NaCl – Schmelze, Kernenergie, 14 (1971) 253-256
- [5] Chemical Directory. Volume II, Chemistry, Leningrad branch (1971) 585 p
- [6] V.Ye Krotov, Regularities of cathode deposit formation during simultaneous reduction and exchange reactions. The mechanism of UO₂-ZrO₂ cathode deposit Formation, Electrochimica Acta, 115 (2014) 28-30

- [7] V.Ye. Krotov, The Influence of the molten NaCl-KCl-UO₂Cl₂-ZrCl₄-UCl₄ composition on The average content of uranium and zirconium dioxide in the cathode deposit UO₂-ZrO₂, Melts (Rus) 2 (2011) 40-48
- [8] V.Ye.Krotov, Ye.S.Filatov, Regularities of cathode deposit formation during simultaneous reduction and exchange reactions. Influence of the electrolysis conditions on the concentration of components in the UO₂-ZrO₂ cathode deposit, Electrochimica Acta 116 (2014) 484-489
- [9] V. Krotov, Ye. Filatov, Anomalous influence of electrochemically inert ZrCl₄ on UO₂ current efficiency during electrolysis in (NaCl-KCl)_{equim}-UO₂Cl₂-ZrCl₄ melt, Electrochimica Acta 145C (2014) 254-258
- [10] M.V.Smirnov, O.V.Skiba, The cathodic processes in the electrolysis of molten NaCl-KCl, containing UCl₃, UCl₄ and UO₂Cl₂, Electrochemistry of molten salt and solid electrolyte (Proceedings of the Institute of Electrochemistry UFAN USSR), Sverdlovsk, 4 (1963) 17-28
- [11] V.Ye. Komarov, N.P.Borodina, Z.S. Martemianova, Influence of zirconium and niobium on the uranium dioxide cathode deposition in molten alkaline chlorides, Radiochemistry 37 (1995) 326-330
- [12] M.V. Smirnov, Electrode potentials in molten chlorides, M. Nauka (1973) 247 p
- [13] M.Iizuka, T.Inoue, O.Shirai, T.Iwai, Y.Arai, Application of normal pulse voltammetry to on-line monitoring of actinide concentration in molten salt electrolyte, J. Nucl. Mat. 297 (2001) 43-51
- [14] I. Barin, Thermochemical Data of pure substances. Part II, Weinheim : VCH Verlags Gesellschaft, 1995
- [15] P.Chiotti, M.C.Jha, M.J. Tschetter, Reaction of thorium and ThCl₄ with UO₂ and (Th,U)O₂ in fused chloride salts, Less-Common Metals 42 (1975) 141-161
- [16] K,A. Romberger, C.F Baes., Jr. and H.H.Stoun, Phase equilibrium studies in the UO₂-ZrO₂ system, J. Inorg. Nucl. Chem. 29 (1967) 1619-1630
- [17] N.M. Voronov, R.M. Sofronova, E.A.Voitekhova, High temperature chemistry of uranium oxides and its compounds, M, Atomizdat (1971) 220, 360
- [18] N.M. Voronov, E.A. Voitekhova, I.T. Kovalev, The phase diagram of the uranium dioxidezirconium oxide system, Works of the Metallurgical Institute named for A.A. Baykov. Alloy structures of some systems with uranium and thorium content, M, Gosizdat (1961) 467-481
- [19] P.E Evans, The system UO₂-ZrO₂, J. Amer. Ceram. Soc. 43 (1960) 443-447

Fig. 1

Fig. 2

Fig. 3

Captions to illustration

Fig.1. Influence of the ZrCl₄concentration in the NaCl-KCl-UO₂Cl₂-ZrCl₄ melt on the average ZrO₂ content in the ZrO₂ -UO₂ cathode deposits

- 1- 750 0 C, 0,08 A/cm², UO₂Cl₂ ~12 wt.% 2- 700 0 C, 0,28 A/cm², UO₂Cl₂ ~10 wt.%,
- 3- 750 0 C, 0,63 A/cm², UO₂Cl₂ ~27 wt.%.

Fig.2. Influence of the electrolysis current density on the average ZrO₂ and ThO₂ content in the UO_2 - MeO₂ cathode deposit, 750 ^oC.

Melt, mol. %: (NaCl-KCl) – UO₂Cl₂(3) – ThCl₄(3.5), (NaCl-KCl) – UO₂Cl₂(3) – ZrCl₄(1.4)

Fig.3. Distribution of uranium and thorium along the $UO_2 - ThO_2$ cathode deposit bulk. Average ThO₂ composition is 40 mol. %.