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Abstract: Dynamic reliability methodologies account for the safety system’s time dependent charac-
teristics while estimating the reliability. Time dependence can arise due to interdependence of process
conditions and hardware states and action of control element. Though static reliability models often
capture the average behavior and try to make conservative estimates, it is inadequate from a number of
perspectives. First, this requires that the analyst needs to establish that the model is conservative. Second,
such modeling requires more expertise and experience in the appropriate domain of the problem, rather
than in the reliability methods. Third, approximate methods may be inadequate to establish reliability
enhancements or degradations due to subtle alterations in the system design. In spite of the significant
effort in the reliability community to establish dynamic reliability analysis methods, there are no general
purpose tools similar to that available for fault tree event tree modeling. In this regard Smart Component
based method is identified as a suitable candidate for general purpose dynamic reliability assessment
and developed for implementation. Smart Component based dynamic method uses elements of object
oriented architecture and Monte Carlo simulation and, is suitable for being developed into a general pur-
pose tool. The paper demonstrates the capability of the method to evaluate reliability of systems having
various types of time dependence, interaction between hardware failure and process evolution and com-
plexity by means of few case studies. The method is found to be promising for accurate modeling of
dynamic as well as static scenarios.
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1. Introduction

Importance of safety in nuclear power plant is well known and the safety of the system is mea-
sured in terms of reliability of the system. Next generation nuclear power plants are increasingly
using digital instrumentation and control (IC) systems for safe operation of plant and employ
passive safety systems for performing critical safety functions. The digital IC systems are com-
plex and highly interacting systems with the physical process and hardware. Estimation of
reliability of the digital systems using traditional static methods require approximate modelling
of the system and hence it has number of limitations: First, this requires that the analyst needs
to establish that the model is conservative. Second, such modeling requires more expertise and
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experience in the appropriate domain of the problem, rather than in the reliability methods.
Third, approximate methods may be inadequate to establish reliability enhancements or degra-
dations due to subtle alterations in the system design. For better modeling dynamic reliability
methodologies have been developed. They are capable of modeling the problem of simultane-
ous stochastic hardware failure and dynamic process evolution dependent on the hardware state
- known as probabilistic dynamics. The dynamic reliability methodologies should be able to
model:

• change of system structure function with time

• time dependence of the reliability parameters (failure rate, mission time, test interval)

• Interaction effects: dependence of process variables on the hardware states and depen-
dence of hardware states on process variables.

A number of dynamic reliability methodologies have been developed such as Cell to Cell
Mapping Technique [1][2], Discrete Dynamic Event Tree [3] [4][5][6], Dynamic Fault Tree
[7][8][9], Dynamic Flowgraph Methodology[10] [11], Petri Nets [12][13], Event Sequence Di-
agram [14][15], Stochastic Hybrid Automaton [16][17][18], GO-Flow methodology [19], Dy-
namic Bayesian Network [20][21][22][23], Monte Carlo methodology [24][25][26][27], etc.
These methods are reviewed in ref. [28][29][30]. Globally, there is no consensus on a dynamic
reliability method being developed into a general purpose tool with proof-of-concept and user
friendly features.

Smart component methodology uses the elements of object oriented architecture for component
and system representation. Monte Carlo methods are used to evaluate the representation for
reliability, which can easily incorporate various types of time dependence, interaction between
hardware failure and process evolution [31][29]. The smart component based methodology is
having an easy input representation scheme and it has user friendly feature. In this method,
user need not to define/store all states and there is no need to define all event scenarios. In
this approach, the same system representation can be reused for both static and dynamic stud-
ies [29]. The method can be easily incorporated into present PRA. Hence, smart component
based methodology embedding Monte Carlo simulations schemes is chosen for further devel-
opment. The paper develops a Smart Component based dynamic methodology and demonstrate
feasibility of the method to solve the reliability problems of critical nuclear safety systems with
dynamic aspects.

Subsequent section 2. develops the smart component methodology that is able to model the
above mentioned requirements and outlines simulation procedure. Further, the method is demon-
strated for static reliability estimation of an active redundant system and unavailability calcu-
lations of a simple dynamic tested system, and results are discussed in section 3.. Finally the
contribution of the paper is concluded in section 4..

2. Smart Component Methodology

The Smart Component Methodology (SCM) is a simulation based dynamic reliability method
with object oriented input representation. In this study we have used a data base for the system
representation, consisting of 1) all the components as tables of the data base, and 2) a relation-
ship between components as a connector table (see Figure 1). The object-as-a-component have
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attributes of the actual component and it behaves like the component. The attributes of the com-
ponent includes state of the components’ hardware, reliability parameters, process variables,
laws of the component-describing the exact behaviour of the component, input variables and
output variables, safety criteria for one or more process variables, control threshold, etc. The
list of the attributes is not exhaustive. In general, attributes are classified as input, output, state
(constant state or dynamic state) or reliability data. The hardware state, process variables, safety
criteria, control threshold are described in the object as state. Each attributes are defined with
values and assignment of the values to these attributes is straight forward i.e., it corresponding
to the actual phenomena. The values are accessed and edited at any point of time and it de-
scribe the current state of the component. The attributes are also able to model dependencies
or relationships with other components; the relations are defined in a relational table of the data
base.

Component
Attributes Value

Component
Attributes Value

Component
Attributes Value

Component
Attributes Value

1 2 3 4

Connector Table
From Component Attributes To Component Attributes

Smart Component
Simulator

Global Rule
System Type
Failure Criterion
Output Monitoring

6

?

Figure 1: Smart Component Framework

A connector table describes explicitly the hard wiring between the components and the attributes
of the interrelated or dependent components common to both. Each entries in connector table
describes the attributes with which the component is connected to the attributes of the other
component. The connection represents either a binary signal, a non-binary signal for process
sequence, or a control signal generated by one component. Hence, any type of component
dependency or in-dependency and interactions between hardware failure and process evolutions
are modelled using these relationships. The communication occurring between the components
of the dynamic system is facilitated through the connector table.

The behaviour of the component is as important as describing the interrelationships. The be-
haviour of the component in the system is described in the Smart Component methodology
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as a law of the component. The detail of a law of the component represents the detail of the
modelling. According to the values of input variables, states of the component and reliabil-
ity parameters, the execution of the law causes change in the values of the output variables,
the states of the system or other dependent component states. The output variables may be a
linear/differential function of input variables, states and/or time. While executing a law of one
component other components’ attributes are un-altered. To depict the simulation of the dynamic
system the execution of laws of the components is carried out in a specific ordered sequence.
The process of going from input to the output or to the delivering-end is well defined in the
design of the system, and hence, the sequence of the components is a known parameter.

Once the system is described with all its components using a connector table and laws, Analog
Monte Carlo simulation of the system is performed in the following manner: First, sampling
of the time to transition using Markov Monte Carlo method described in ref. [24]. Second, the
system is evolved/controlled up to the sampled time of transition by executing the sequence of
laws of the components at each time step. Third, transition of the component state determined
according to the Markov Monte Carlo method described in ref. [24]. The tallying of the system
failure is carried out after every transition of the state for the defined system failure criteria. Im-
portance sampling based variance reduction techniques such as forced transition and/or failure
biasing can be applied for accelerated Monte Carlo calculations in step 1 and step 3 respectively.
In accelerated Monte Carlo simulation the importance sampling is carried out up to first system
failure subsequently analog Monte Carlo simulation sampling procedures are applied.

For static reliability estimation of the same system, the same system model can be utilized
along with a reachability check up to the end component or function-delivering component from
the starting component. The reachability check is started from each starting component and
propagated towards the end component, if a failed component is found in between, then the path
is terminated and other alternative path is followed. If the reachability up to the end component
found then it is concluded that the system is in working state. If all the path are terminated due
to one or more component failure then the system is in failed state. The reachability check is
carried out after each component state transition. In the following section the application of
the reachability concept in Smart Component methodology for static reliability estimation of an
example system k/m active redundant system is demonstrated.

3. Application of Smart Component Methodology to Two Example Systems

3.1. Static Reliability Estimations of an Active Redundant System

Towards validating and performance checking for Smart Component based method simple ex-
amples are studied in this paper including static and dynamic evaluation. The redundancy in-
creases the complexity in the system model in terms of dependency and size. A redundant
system have more than one input components; and, to model this situation, Smart Component
method treats the number of inputs easily using reachability check concept. It checks reachabil-
ity to the end component, and if the reachability is achieved with more than required path (2 for
2/3 voting system) than the system is assumed to be in working state otherwise in failed state.
With this, an example of a widely used 2/3 voting system is evaluated using Smart Component
methodology below.

Three temperature sensors are distributed for monitoring temperature in a reactor safety system.
Though one sensor is enough for temperature monitoring, three sensors are used for redundancy
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purpose, and, two-by-three voting logic is used for decision purpose. Scram is actuated upon
receiving of two scram signals from either of the three sensors. The system reliability parame-
ters are estimated for unreliability for a specified mission time and unavailability using analog
and accelerated Monte Carlo methods of the Smart Component methodology and Reliability
Workbench 10.2, as described below. As shown in Figure (2), a voting system is connected to
three sensors. The scram is actuated upon crossing of safety limit by two or more sensors. The
reliability evaluation of the system is straight forward. The system database is built considering
constant repairable model for each components and static reliability is estimated with failure
criteria defined as: the failure of two or more input sensors. Failure rate of one sensor is higher
10−3 per hour and other sensors are having failure rates of 10−4 per hour. Repair rate of 10−1

per hour is same for all the three sensors.

Results and Discussion:

The reliability parameters such as steady state unavailability and mission time unreliability are
estimated using Markov Monte Carlo simulation with both analog and importance sampling
methods for the simple redundant system. The fault tree of the simple redundant 2/3 voting
system evaluated using Reliability Workbench 10.2. The results are shown in Table I. The
results shows that the analog and accelerated Monte Carlo techniques give accurate results and
the results are matching satisfactorily. The fractional error and coefficient of variation indicate
that the performance of accelerated simulation is very good.

TOP EVENT
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System Failure

GATE1
2

2/3 Voting
Gate

C1 FAIL

Component 1

r=0.001
Q=0.0099

C2 FAIL

Component 2
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Q=0.000999
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Component 3

r=0.0001
Q=0.000999

Reliability Workbench V10.2 Fault & Event Trees

03/01/2017 Page 1 of 1

Figure 2: Fault Tree of the 2by3 Voting System
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TABLE I: SMART COMPONENT RESULTS FOR COMPARISION OF RELIABILITY OF
THE 2/3 REDUNDANT SYSTEM FOR MISSION TIME OF 1000 HR

Number of histories N
Number of Batch M
Average time per history (seconds) t̄
Unavailability Ā
Variance σ2

a

Fractional Error fA = σ
Ā

Coefficient of Variation ∆ = N
1
2 ∗ fA

Figure of Merit FOM= 1
σ2 t̄

Unreliability R̄

Parameters Analog MC SCM Accelerated MC
SCM

Reliability
Workbench 10.2

N 10000 10000
M 5 5
t̄ 0.195 0.256

Ā (×10−5) 1.8 1. 2.08
σ2
a (×10−8) 3.56 0.0078
fA 10.42 1.410
∆A 1042.29 141.05
FOMA 1.44×108 5.08×109

R̄ 0.0035 0.0039 0.0041
σ2
r 3.5×10−7 1.8×10−5

fR 0.167 1.079
∆R 16.73 107.88
FOMR 1.44×107 2.14×105

3.2. Unavailability Estimation of an Simple Dynamic Tested System

For achieving high reliability redundancy at system level or at component level is used. The high
reliability is also being achieved by employing testing and diagnosing system to the system.
In the tested system, the system is tested periodically for its working conditions with a test
interval. Upon detection of the failed condition a deterministic or probabilistic repair process
is initiated and the repaired condition of the component is either ’as good as new’, ’minimal
repair’. Moreover, the tests can be of either Type I, Type II or of Type III as described in ref.
[32]

In the direct Monte Carlo simulation of this situations, the time during which the system is down
is dictated by the repair time and test interval. This dynamic situation cannot be modeled easily
using traditional reliability methodology such as fault tree, event tree, reliability block diagram.
Even though Markov models are successful for the unavailability calculations of the maintained
systems (see Figure 4), because of the state space explosion problem, scalability of the model
to complex system is doubtful. In this paper a tested/failure category [Told, Fold] and the Type
II of scheduled maintenance as defined in [32] is modeled in Smart Component framework and
quantitative analysis is performed for unavailability calculations. the approximate expression
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for unavailability for the tested system as shown in Figure (3) is arrived at using Shanon De-
composition method as follows: Here, λi is failure rate, τi is testing interval and Ti is mean time
to repair, where i = s, d. We can write the Shannon decomposition for two variable boolean
function f(D,S) as,

f(D,S) = D ∗ f(1, S) + D̄ ∗ f(0, S) (1)

P (f(D,S)) ≡ P (D)P (S|D) + P (D̄)P (S|D̄) (2)

With rare event assumption, the probabilities are:

P (f(D,S)) ≡ λd(Td + τd)λs(Td + τd) + λs(Ts + τs/2) (3)

The schematic of the system is shown in Figure 3. A tested system is connected to a testing
and diagnosing system. The testing system tests the tested system at specified time intervals. In
[Told, Fold] category of maintenance neither tests nor repair have any effect on reliability char-
acteristics of the components. In type II of scheduled maintenance a component is maintained
periodically at constant intervals τs irrespective of any repairs which might have taken place
before. And upon detection of the failed component a deterministic repair process is initiated.
Here, the testing system is also manually tested with success probability of one at constant in-
tervals τd. A constant mean time to repair model is used for repair of both the components with
MTTR of Ts(= 1

µs
) and Td(= 1

µd
). The failure rates are denoted by λs and λd per hour.

Results and Discussion:

Unavailability of the tested system is calculated after generalising the analog Monte Carlo
method to SCM. Unavailability is also calculated using approximate unavailability obtained
from Shanon expansion of equation 3, Markov model as given in Figure 4. The results for
approximate method, Markov model and Smart Component Monte Carlo method are given in
column 2,3 and 4 respectively in Table II. It is observed that the estimated unavailability value
matches with the Markov model of the two component tested system, whereas the approxi-
mately calculated unavailability is always higher.

Figure 3: A Simple Tested System Figure 4: Markov model of the tested system



8 189

TABLE II: UNAVAILABILITY RESULTS OF THE TESTED SYSTEM

Parameters Approximate
Method Markov Model Smart Component

Methodology

λs = 1× 10−4

λd = 1× 10−4

τs = 1hr
τd = 24hr
Ts = Td = 4hr

Ā = 5.1× 10−4 Ā = 4.5× 10−4

Ā= 4.5× 10−4

N = 10000
M = 10
σ2 = 4.1× 10−10

f = 0.045
t̄ = 0.00002sec
∆ = 1.39× 1013

4. Conclusion

The object oriented representation based Smart Component method is developed for application
to dynamic reliability problems. A relational data base framework is chosen for implementa-
tion. The method is applied to two example systems, viz, 1) an active redundant system for static
reliability calculations and, 2) a simple tested system for dynamic reliability calculation. Appli-
cation of accelerated Monte Carlo method is also demonstrated with SCM for achieving faster
calculations with less error. The results of SCM for static reliability calculations are matching
well with that from the traditional methods and the results for dynamic methods eliminate con-
servatism. The results of evaluation of SCM for dynamic and static reliability calculations gives
confidence that it can be used to solve more complex problems while avoinding the state-space
explosion problem encountered in Markov modeling. Further study is in progress to apply the
method to industrial scale problems.
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