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Abstract. KAERI (Korea Atomic Energy Research Institute) has been developing a preliminary specific 
design of the PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor), which is a pool-type sodium cooled fast 
reactor with a thermal power of 392.2 MW. The PGSFR has an inherent safety characteristic owing to the design 
to have a negative power reactivity coefficient during all operation modes and it has a passive safety 
characteristic due to the design of a passive decay heat removal circuit. For an evaluation of the safety features 
of the PGSFR, a sensitivity analysis has been performed for TOP (Transient Over-Power) which is one of most 
important DBEs (Design Basis Events) in the PGSFR using MARS-LMR code. MARS-LMR contains the 
sodium property table including dynamic properties, heat transfer correlations for the liquid metal, and the 
models describing the flow resistance by wire-wrap spacer in the core, which shows a good agreement with the 
experimental data conducted in the EBR-II plant and the appropriateness of the models related to liquid metal 
reactor. For a sensitivity analysis, some design variables are applied to be conservative. An effect of 
uncertainties is evaluated on a Doppler reactivity and a sodium density. Conservative assumptions are applied to 
the analysis of the plant responses during the postulated DBAs, which are 102 % of power condition with ANS-
79 decay power model, 5.0 seconds delay in opening of AHX and FHX dampers, and loss of off-site power 
(LOOP) is taken into account. Additionally, one PDHRS (Passive Decay Heat Removal System) and one 
ADHRS (Active Decay Heat Removal System) are available in accordance with a single failure criterion and 
maintenance. As a result, the preliminary specific design of PGSFR, meets safety acceptance criteria with a 
sufficient margin during the TOP event and keep accidents from deteriorating into more severe accidents. 
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1. Introduction 

SFR (sodium fast reactor) design technologies have been developed in South Korea since 
1997 under a National Nuclear R&D Program intended to achieve enhanced safety, efficient 
utilization of uranium resources, and reduction in the volume of high level waste. In 2015, the 
preliminary specific design of the PGSFR was completed. It is a pool-type sodium-cooled fast 
reactor with the thermal power of 392.2 MWt, and uses metallic fuel of U-Zr(10%) in a core 
having inherent reactivity feedback mechanisms and high thermal conductivity. 

The PGSFR consists of the PHTS (Primary Heat Transport System), the IHTS (Intermediate 
Heat Transport System), the SGs (Steam Generators) including BOP (Balance of Plant), and 
the DHRS (Decay Heat Removal System) shown in Fig.1. The PHTS is placed in a large pool 
to make the system transients slower, which provides greater probability that abnormal events 
will terminate before they propagate to become accidents. The IHTS loop is thermally 
coupled to the PHTS and to the SGs (steam generators). The IHTS transfers the reactor-
generated heat from the IHX (Intermediate Heat eXchanger) of the PHTS to the SG. The 
IHTS consists of two loops, and each loop has two IHXs, one EM (electro-magnetic) pump, 
one expansion tank, and one steam generator. The SGs consist of two independent steam 
generation loops and where sub-cooled water is converted to super-heated steam. The DHRS 
has a heat transfer capability of 10 MWt, and is composed of two units of PDHRS and two 
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TABLE I: SAFETY ACCEPTANCE CRITERIA FOR EVENT CATEGORY 

  

2. Analysis Method 

Figure 2 shows the MARS-LMR nodalization for the PGSFR preliminary specific design. The 
core is modeled as four parallel flow channels (i.e., hottest sub-assembly, fuel assemblies, 
non-fuel assemblies, and leakage flow). Active fuel regions are axially divided into eight 
nodes. The PHTS is placed in a large pool with two temperature zones. Four sodium-to-
sodium decay heat exchangers (DHX), and two pumps, are located in the cold pool; while 
four IHXs are located in the hot pool to transfer the reactor-generated heat from the PHTS to 
the SG. The IHTS consists of the two IHXs tube side, piping, one EM-pump, and one SG 
shell side. The steam generator tubes are divided into a total of 30 nodes. The SG inlet feed-
water boundary region is described with a constant mass flow-rate condition, and the SG 
outlet boundary region near the high-pressure turbine is described with a constant pressure 
condition. Each DHRS is modeled in passive and active modes (i.e., using PDHRS and 
ADHRS, respectively). The DHX is immersed in the cold pool region and the sodium-to-air 
heat exchanger is located in the upper region of the reactor building. Air boundary regions in 
the mode are imposed at the entrance and exit of this part.  

The reactor shutdown system requires inclusion of a mandatory protection system to prevent 
deterioration of the plant during all conceivable accidents. Table 2 lists the trip parameters 
and the set points (with uncertainties) of the reactor protection system. 

Conservative assumptions are applied to the analysis of plant responses during the postulated 
DBAs. These include 102 % of power condition with ANS-79 decay power model [3], 5.0 
seconds (s) delay in opening of AHX and FHX dampers, and loss of off-site power (LOOP). 
Additionally, one PDHRS and one ADHRS are available in accordance with a single failure 
criterion and maintenance. 

 

TABLE II: TRIP PARAMETERS AND SET POINTS 

 

 

Event 
Category AOO DBA Class 1 DBA Class 2 DEC 

Fuel/ 

Cladding 

CDF*∑AOO< 0.05 

Strain<1% 

CDFevent< 0.05 

Strain<1% 

Fuel T<Solidus T 

Clad T<1075 °C 

Coolant T<Boiling T 

Coolant T 

<Boiling T 

Parameter Set-point (Uncertainty) 

High core inlet temperature 410 (±6) ℃ 

High power to PHTS flow ratio 119 (±2.4) % 

SG shell outlet temperature 359 (±6) ℃ 

Low hot pool level 0.2 m below 100% operating level (±10 cm) 
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FIG. 3. Clad mid-wall temperature change  
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FIG. 4. Power to flow ratio 
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FIG. 5. Coolant temperature change 

 

 

 

100 101 102 103 104 105

0

500

1000

1500

2000

2500
 

 

F
lo

w
 R

at
e,

 k
g/

se
c

Time, sec

TOP with LOOP
 Core_Out
 Fuel Assemblies
 Hot Assembly
 Non-fuel 
 Leakage

 
FIG. 6. Flow rates through core channels  
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FIG. 7. Flow rates through IHTS 
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FIG. 8. Heat removals by DHRS compared with decay power 
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3.1. Sensitivity Results 

 
For the sensitivity analysis, some design variables are applied to be conservative. Table 3 

shows a range of design parameters and reactivity parameters with their uncertainties. An air 
flow rate, air temperature, Doppler reactivity, and density reactivity are selected for the 
sensitivity variables.  

 
TABLE III: THE RANGE OF SENSITIVITY PARAMETERS  

 

 

Figs. 9 to 11 show the results for the sensitivity calculations. As shown in the Figs, the clad 
temperature is not sensitive for the variation of the air temperature, the air flow rate, Doppler 
reactivity, and density reactivity in their uncertainty ranges. The variation of the air flow rate 
can affect more severely on the capacity of the decay heat removal systems. The less air flows 
into the AHX, the less heat removal is achieved, and then the larger clad temperature is 
calculated. But the uncertainty of the air flow rate in the PGSFR is just 3 %, which is proved 
by the AHX test facility. 
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FIG. 9. Clad mid-wall temperature change versus air flow rate 

 

Parameter Range 

Air flow rate 97%~100% 

Air temperature 10℃~ 40℃ 

Doppler reactivity -30% ~ 30% 

Density reactivity -35.4% ~ 35.4% 
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FIG. 10. Clad mid-wall temperature change versus air temperature 
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FIG. 11. Clad mid-wall temperature change versus reactivity feedback 
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4. Conclusion 

In order to assess the inherent safety features of the PGSFR, a safety analysis was performed 
for the TOP accident with MARS-LMR and the sensitivity analysis was also performed to 
find the most conservative condition. As a result, the PGSFR was appropriately tripped by the 
RPS (Reactor Protection System) and cooled by the DHRS during the TOP. Besides, the clad 
temperature is not sensitive for the variation of the air temperature, the air flow rate, Doppler 
reactivity, and density reactivity in their uncertainty ranges. In conclusion, the preliminary 
specific design of PGSFR meets the safety acceptance criteria with a sufficient margin during 
the TOP event. 
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