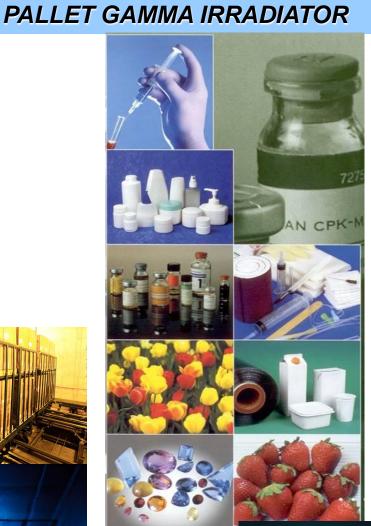


Multipurpose Gamma Irradiator and Mobile Unit with an Electron Beam Accelerator Developed in Brazil

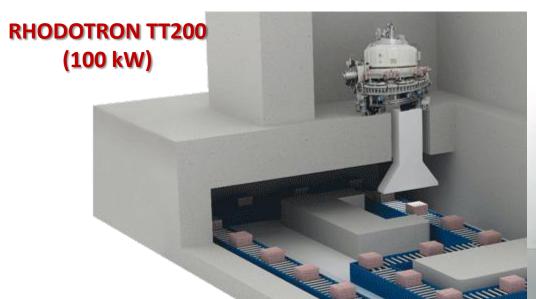
W.A.P.Calvo, C.L.Duarte, S.L.Somessari, F.E.Sprenger, F.E.Costa, A.Feher, P.A.V.Salvador, N.M.Omi, L.G.A.Silva, F.F.Lainetti, P.R.Rela, M.H.O.Sampa

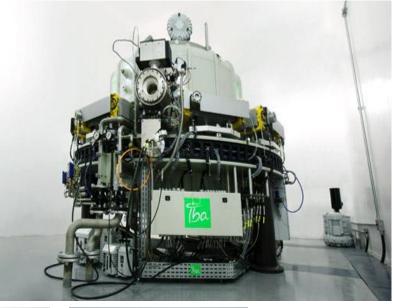
Nuclear and Energy Research Institute (IPEN)
National Nuclear Energy Commission (CNEN)
Radiation Technology Centre
IPEN-CNEN/SP

STERIGENICS-CBE



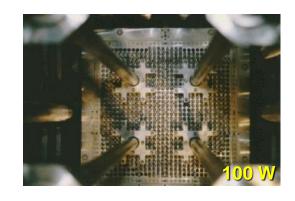
National Technology (3MCi)



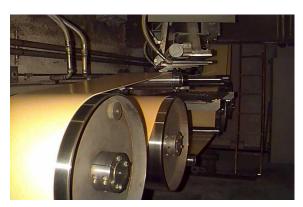


STERIGENICS -CBE

BRAZIL NUCLEAR AND ENERGY RESEARCH INSTITUTE (IPEN)

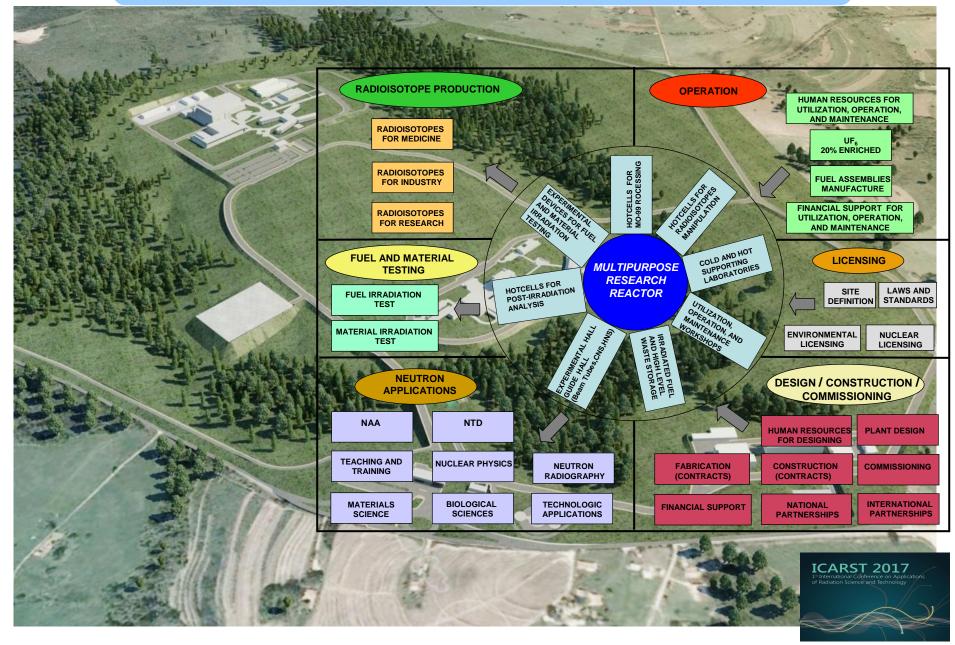


√ 100W and 5MW


✓ IBA (18/9MeV and 30MeV)

© 2 ELECTRON
BEAM
ACCELERATORS
✓ RDI (1.5 MeV)

BRAZIL NUCLEAR AND ENERGY RESEARCH INSTITUTE (IPEN)



BRAZIL MULTIPURPOSE RESEARCH REACTOR (30MW)

TECHNICAL COOPERATION

Success Story - I

Safety Design, Construction and Operation of Multipurpose Gamma Irradiator in Brazil

- 1. International Basic Safety Standards (BSS)
 - Protection against Ionizing Radiation
 - Safety of Radiation Sources
- 2. IAEA Safety Standards and <u>Lessons</u>
 <u>Learned from Accidents in Industrial</u>
 <u>Irradiation Facilities</u>
- 3. Safety Standards of the National Nuclear Energy Commission (CNEN) Brazil

IAEA Safety Standards

for protecting people and the environment

Radiation Safety of Gamma, Electron and X Ray Irradiation Facilities

Specific Safety Guide No. SSG-8

NUCLEAR AND ENERGY RESEARCH INSTITUTE (IPEN)

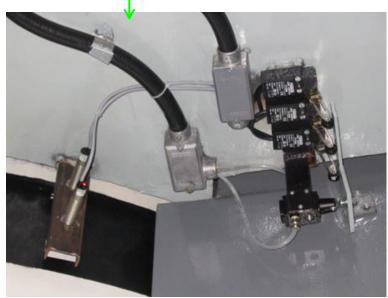
MULTIPURPOSE GAMMA IRRADIATOR

<u>DUR / Efficiency</u>: 1,33 / 11,6% (0,09g/cm³) 2,08 / 36,6% (0,49g/cm³)

Project and construction

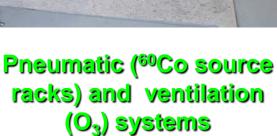
Bunker
VII/VIII Modified Mercalli Scale
(wind of 331km/h)

Wearhouse


Safety interlock system

Geiger-Müller detector

Redundancy, diversity and independence systems



Safety interlock system



Geiger-Müller detector and conductivity instrumentation

(<10uSiemens/cm)

1: International Conference on Applications of Radiation Science and Technology

Loading of ⁶⁰Co sealed sources

Flushing Test Activity < 5nCi (185Bq)

Type B(U) Package

60Co Sealed Sources (C-188)

Safety interlock system (control room)

Geiger-Müller detector and ionization chamber (< 2µSv/h)

Radiation
detectors and
seismic
intrumentation

Radiosterilization - 99Mo/99mTc Generators

- > 400 generators / week
- > 250, 500, 750,1000, 1250, 1500 and 2000mCi

Radiation Processing of cultural Heritage

Routine operations (semi-industrial scale)

 Disinfestation and disinfection of cultural objects (books, furniture, sculptures and paintings) > 20,000 artefacts / year



STAKEHOLDER INVOLVEMENT AND PUBLIC COMMUNICATION

IAEA ARCAL RLA0058 - Using Nuclear Techniques in Support of Conservation and Preservation of Cultural Heritage Objects. Radiation technologies in daily life

https://www.youtube.com/watch?v=ePiNdzWjoWM

IAEA CRP / F23032 - Developing Radiation Treatment Methodologies and New Resin Formulations for Consolidation And Preservation of Archived Materials and Cultural Heritage Artefacts.

https://www.youtube.com/watch?v=wvid7KvPPjE

TECHNICAL COOPERATION

Success Story – II

IAEA TC BRA1035 (2016-2018)

Establishing a Mobile Unit with an Electron Beam Accelerator to Treat Industrial Effluents for Reuse Purposes in Brazil

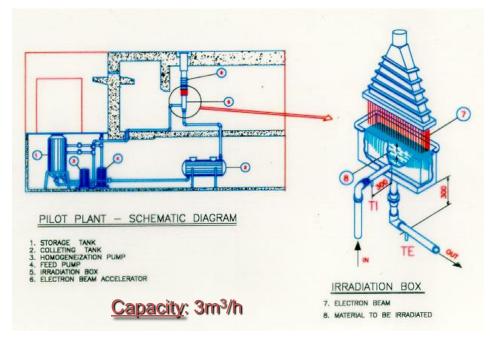
<u>ICARST 2017</u>

"We need more demonstration facilities to disseminate the EB-Technology in industrial scale for environmental applications"

(B. S. Han, IAEA)

"Transportable EB systems are needed to address contaminated groundwater situations"

(S. Pillai, Texas A&M University)


"Application of Mobile EB for remediation of soil and groundwater "

(S. Yu, KAERI)

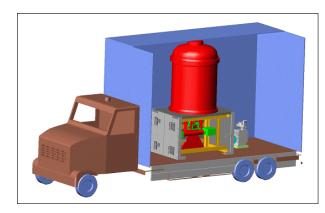
WASTEWATER TREATMENT BY ELECTRON BEAM ACCELERATOR

IAEA TC Project BRA/8/025
Electron Beam Treatment of
Wastewater
(1993-1997)

<u>IAEA's Model Project</u> (1995)

MOBILE ELECTRON ACCELERATOR – EB TECH

Laboratorial scale experiments (1~50m³/day)



Laboratorial scale experiments (1~10,000Nm³/h)

Pilot scale experiments (20~1,000m³/day)

- Cost
- Space
- Operation & Maintenance, other

Industrial scale wastewater plant (10,000m³/day)

Industrial scale EBFGT Plant (~600,000Nm³/h)

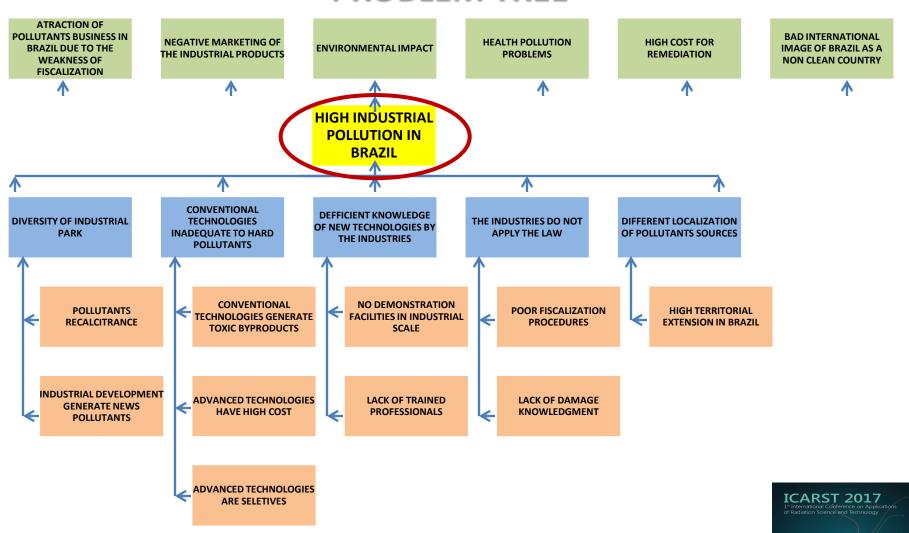
MOBILE ELECTRON ACCELERATOR – EB TECH

PARTNERS

TRUCKVAN

Truckvan manufactures road implements, in special aluminum vans, products and diverse solutions for special uses, equipment and Mobile Units. Its portfolio includes consolidated, high technology solutions for the healthcare, training, trading, operations, entertaining, events, defense and security industries.

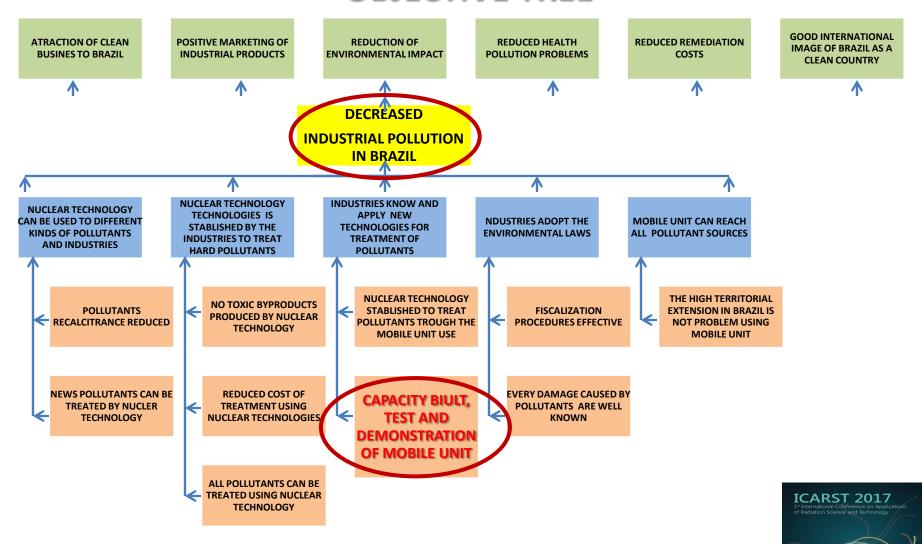
SENAI SÃO PAULO



IAEA TC BRA1035

MOBILE UNIT WITH AN ELECTRON BEAM ACCELERATOR TO TREAT INDUSTRIAL EFFLUENTS FOR REUSE PURPOSES

PROBLEM TREE


Source: PCMF-IAEA

IAEA TC BRA1035 MOBILE UNIT WITH AN ELECTRON BEAM ACCELERATOR TO TREAT INDUSTRIAL EFFLUENTS FOR REUSE PURPOSES

OBJECTIVE TREE

Source: PCMF-IAEA

IAEA TC BRA1035 - Funding and Project Budget

Project	2016	2017	2018	TOTAL (EUROS)	
IAEA FINEP (Brazilian Innovation Agency) IPEN, TRUCKVAN, SENAI	FINEP 8,000		20,000 10,000 89,800	213,100 429,000 527,200	

DDO JECT JAEA TO	Project Workplan	EUROS	
PROJECT IAEA TC BRA1035	2016 - 2018	1,169,300	

Investors

- IAEA Technical Cooperation Fund
- Sao Paulo Research Foundation (FAPESP)
- CNPq (Ministry of Science and Technology)
- Sao Paulo Sanitation Company (SABESP)
- Energy Company PETROBRAS
- SENAI (National Service of Industrial Training)
- TRUCKVAN
- > IPEN-CNEN/SP

Source: PCMF-IAEA

IAEA TC BRA1035 - PROJECT COSTS

Capital Cost (Investment)

Initial costs	Investments (US\$)
Engineering design, installation and functional testing (10% of investment)	150,000
Water cooling system (chiller and piping) > 45.000 kcal/h	40,000
Shielding structure and shield door	130,000
Consumption materials (SF ₆ gas, methanol, acetone, N ₂ gas, O ₃ filter, electrical	50,000
materials, electronic, hydraulic, mechanical and pneumatic materials)	
Tools, systems and equipment (multi-meter, Megger high-voltage insulation tester, air	40,000
compressor)	
Radiation monitoring device and survey meters	30,000
Transformer (480V/440V/380V/220V) with electric control panel	40,000
Process control, safety and interlock systems	60,000
Under-beam unit (irradiation device, beam catcher, pumps, piping, sensors,	80,000
man/machine interface program)	
Shelter and trailer (6.47 tons, maximum capacity of 24.8 tons) with side and roof	220,000
structure (aluminum), monitoring system with camera, extinguisher, heater, air	
conditioner, cable tray, lights, inside walls with door (soundproof)	
Electron Beam Accelerator (0,7MeV e 20kW) with vacuum system, foil fan, ozone	570,000
ventilation fan, wiring and cabling	
Licenses for construction and operation (National Nuclear Energy Commission – Brazil)	20,000
Skilled labor in the Radiation Technology Center and IPEN-CNEN/SP (construction and	70,000
installation)	
Total cost (investment)	1,500,000

IAEA TC BRA1035 - PROJECT COSTS

380,500

Operating costs (fixed and variable)

Operating costs	Price			
(Annual)	(US\$)			
Fixed costs				
Depreciation (20 years and interest rate of 5% per year)	75,000			
Bank interest (5% of total investment)	75,000			
Management: insurance and fees (2% of total investment)	30,000			
Subtotal	180,000			
Variable costs				
Maintenance (3,5% of total investment)	52,500			
Electricity consumption of 50kW and 333 days/year: electron	48,000			
accelerator = 25kW (80% efficiency) and other equipment = 25kW				
Labor (3 shifts)	100,000			
Subtotal	200,500			
	ICARST 2			

Total operating cost

IAEA TC BRA1035 - PROJECT COSTS

Treatment Costs

Effluent	Dose	Amount	Power	Capital cost	*Variable cost	Cost/m³ of effluent
	(kGy)	(m³/day)	(kW)	(Million	**(Variable and fixed costs)	treated
				US\$)	(Million US\$)	(US\$)
Removal of geosmine-	1	1,000	20	1.5	0.20	0.60
GEO and						
methilisoborneol-MIB					(0.38)	(1.14)
from drinking water Removal of industrial					0.20	1.20
textile dyeing from	,	500	20	1.5	0.20	1120
wastewater	2	500	20	1.5	42.22	
ED 1 41 6 116		0.40		4.5	(0.38)	(2.28)
Elimination of coliforms	3	340	20	1.5	0.20	1.77
from raw sewage, secondary and						
chlorinated effluents					(0.38)	(3.36)
Removal of organic	20	50	20	1.5	0.20	12.0
compounds from						
petroleum production					(0.20)	(00.0)
water					(0.38)	(22.8)
Removal of PCB from					0.20	30.1
transformers oils	50	20	20	1,5		
					(0.38)	(57.1)

^{*} Variable cost only (maintenance, electricity and labor)

^{**} Both variable and fixed costs (depreciation, bank interest and management)

MOBILE UNIT WITH EB ACCELERATOR TO TREAT INDUSTRIAL EFFLUENT FOR REUSE PURPOSE

The EB Mobile Unit will enlarge the national capacity to treat industrial effluents, with the capacity to treat effluents on site from 1m³/h up to 1,000m³/day. Will provide an effective facility between a laboratory-scale plant to a large-scale plant with the objective to demonstrate the efficacy and transfer the technology

For treatment of effluent from chemical, pharmaceutical and petroleum production, petroleum desulfurization and degradation of toxic organic compounds in wastewater for reuse

Examples of industrial effluent raw (darker) and after (clearer) treatment by EB Technology at IPEN

TECHNICAL CHARACTERISTICS

EB ACCELERATOR 0.7 MeV and 20 KW

MODULE 1

Electric Control Panel Meeting and Class Room Transformer Power Supply

MODULE 2

EB Accelerator Shielding Structure Irradiation System

MODULE 3

Transformer Power Supply Water Cooling System

MOBILE UNIT WITH AN ELECTRON BEAM ACCELERATOR TO TREAT INDUSTRIAL EFFLUENT FOR REUSE PURPOSE

National Nuclear Energy Commission

Nuclear and Energy Research Institute

INTERNATIONAL ATOMIC ENERGY AGENCY TC PROJECT BRA1035

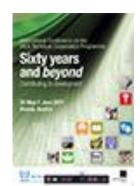
FUNDING AUTHORITY FOR STUDIES AND PROJECTS OF THE BRAZILIAN FEDERAL GOVERNMENT

IPEN-CNEN/SP Av. Prof. Lineu Prestes, 2242 - São Paulo/SP

05508-000 - BRAZIL Tel.: +5511 3133 9101 Fax.: +5511 3133 9018

www.ipen.br

PARTNERS



STAKEHOLDER INVOLVEMENT AND PUBLIC COMMUNICATION

IAEA ARCAL CXLVI/RLA1013 (2016-2019) - Creating Expertise in the Use of Radiation Technology for Improving Industrial Performance, Developing New Materials and Products, and Reducing the Environmental Impact of the Industry. International Conference on the IAEA Technical Cooperation Programme: Sixty Years and Beyond – Contributing to Development

(Vienna, Austria, 30 May - 1 June 2017)

IAEA CRP / F23029 - Radiation Treatment of Wastewater for Reuse with Particular Focus on Wastewaters Containing Organic Pollutants.

