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The problem to be attacked

* Massive investments by the oil industry are
directed to maintenance and inspection.

* Annual cost of corrosion to the oil and gas
industry in the United States alone estimated
to be $27 billion, leading to an estimate of
the global annual cost of maintenance as

exceeding $60 billion
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Main aims of maintenance

* Avoid breaches in the production process.

 Maximum advantage of time, personnel and
tool resources obtained during planned
pauses for maintenance.

* Avoid large negative impacts on economic
achievement.
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To comply with this:

* Equipment inspection procedures on a
continuing basis emerge as crucial.

* The search for new inspection techniques
turned into a differential in the oil industry.
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Hence, some conjectures:

* Could tracers also be of value in detecting
internal damage to closed pipes subject to
aggressive environments such as oil
processing plants?

* Could they be added to the present roll of
nondestructive inspection techniques?
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Corrosion and Scaling

 Two of the most deleterious damages to the
structural properties of equipment
components in oil refineries.

* Requiring unpostponable intervention and
production stoppage.
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Corrosion and Scaling

* Despite progresses have been achieved in the
scientific knowledge of these processes,
problems persist.

 They may even become more severe, due to
the heavier, and therefore more acidic, crude
oils being introduced in the refining processes.




Pit corrosion




Pit corrosion

* Internal aspect:




Pit corrosion




Scaling

* |[ron hydroxide scales:




Scaling

* Scaling at a cooling water pipe




Methodology: Tracer impulse response

Cc(t)
fOT C(t)dt

* Residence time distribution: E(t) =

* Mean residence time: t = fOT t. E(t)dt :g
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Assembly for Radiotracer test
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Assembly for Dye Tracer test
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DTS-Pro Software

e Convolution of entrance and exit pulses
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DTS-Pro Software

Heoactor paramalors @
Parametors Optimisaton
*4‘___;.'.;__JIL_ S o | f
. : ¢ Vehme | o |
T o |
Tm l r [ l
o o) l
apha | | l
Pe 17669 r o |0
Ok | X Carvel |

ICARST 2017




Test flowrates

Identificati Flowrate Reynolds Flow
dentiication (mL.s1) Number regime
Q1 28 880 laminar
2 111 3519 turbulent
Q3 249 7918 turbulent
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Results from dye tracer tests
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Results from radiotracer tests
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Results from radiotracer tests
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Results from radiotracer tests
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Dispersion coefficients
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Flow parameters calculated by DTS Pro

SP Flowrate (mL/s) t(s) V (em/s) D (cm?/s) Pe
28 18.09 2,21 0,181 1,76 x 10°
A 111 4,68 8.55 0,233 5,46 x 10°
249 2,16 18.52 0,488 587 x 10°
28 20,17 1,08 0,254 1,25 x 10°
B 111 6,25 6.40 0,371 3,43 x 10°
249 3.42 11.69 0,592 4,84 x 10°
28 - 23,71 1,68 0,327 0,97 x 10°
C 111 7.24 5,52 0.412 3,09x 10°
249 5.83 6.86 0,638 4,49 x 10°
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CFD Simulation - Geometry
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CFD Simulation — Boundary conditions

Mass flow Reynolds Feed
Material ass llowrate - pressure Domain
(kg/s) Number (atm)
0,028 880,074
Pure water
(constant 0.111 3519.757 1.000 hlzzi;t;be
properties)
0,249 7918,049
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CFD Simulation — 3D Grid




CFD Simulation Results — Streamlines




Velocities along the centre of the tubes

Recirculation causes acceleration near the entrance and
subsequent deceleration.

The effect is stronger at higher flowrates.
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Conclusions

* Dye tracers are not as effective as radiotracers
due to the need of sampling and the lesser
frequency of measurements.

e Qualitative differences could be noticed in the
tracer response patterns of normal and
damaged pipes.

* Scaling was more sensitive to the reduction in
the time of transit
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Conclusions

 Recirculation at the entrance increases with
flowrate.

* Changes in the patterns of the RTD curve were
due to discontinuities in the internal surface.

* Tracer dispersion consistently increased as
flowrate increases, and the effect is more
sensitive for scaling than for pit corrosion.
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Conclusions

* Tracers, especially radiotracers, have a
potential to detect damages that can

introduce a discontinuity in the inner surface
of pipes, namely pit corrosion and scaling.
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