A TRACER APPLICATION: DETECTING DAMAGE TO OIL INDUSTRY PIPING

J.A.P. Nicácio, R.M. Moreira, A.A. Barreto, A.A. Campangnole

Centre for the Development of Nuclear Technology
Brazilian Nuclear Energy Commission
The problem to be attacked

• Massive investments by the oil industry are directed to maintenance and inspection.

• Annual cost of corrosion to the oil and gas industry in the United States alone estimated to be $27 billion, leading to an estimate of the global annual cost of maintenance as exceeding $60 billion
Main aims of maintenance

• Avoid breaches in the production process.
• Maximum advantage of time, personnel and tool resources obtained during planned pauses for maintenance.
• Avoid large negative impacts on economic achievement.
To comply with this:

• Equipment inspection procedures on a continuing basis emerge as crucial.

• The search for new inspection techniques turned into a differential in the oil industry.
Hence, some conjectures:

- Could tracers also be of value in detecting internal damage to closed pipes subject to aggressive environments such as oil processing plants?

- Could they be added to the present roll of nondestructive inspection techniques?
Corrosion and Scaling

• Two of the most deleterious damages to the structural properties of equipment components in oil refineries.

• Requiring unpostponable intervention and production stoppage.
Corrosion and Scaling

• Despite progresses have been achieved in the scientific knowledge of these processes, problems persist.

• They may even become more severe, due to the heavier, and therefore more acidic, crude oils being introduced in the refining processes.
Pit corrosion
Pit corrosion

• Internal aspect:
Pit corrosion

(50 X)
Scaling

• Iron hydroxide scales:
Scaling

- Scaling at a cooling water pipe
Methodology: Tracer impulse response

- Residence time distribution: \(E(t) = \frac{C(t)}{\int_0^T C(t)\,dt} \)
- Mean residence time: \(\bar{t} = \int_0^T t \cdot E(t)\,dt = \frac{V}{Q} \)
Simulacra pieces
Simulacra pieces
Assembly for Radiotracer test
Assembly for Dye Tracer test
GGUN-FL Fluorometer
DTS-Pro Software

• Convolution of entrance and exit pulses

\[y(t) = \int_{0}^{t} E(t') \cdot x(t - t') \, dt' \]
DTS-Pro Software
Test flowrates

<table>
<thead>
<tr>
<th>Identification</th>
<th>Flowrate (mL.s(^{-1}))</th>
<th>Reynolds Number</th>
<th>Flow regime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>28</td>
<td>880</td>
<td>laminar</td>
</tr>
<tr>
<td>Q2</td>
<td>111</td>
<td>3519</td>
<td>turbulent</td>
</tr>
<tr>
<td>Q3</td>
<td>249</td>
<td>7918</td>
<td>turbulent</td>
</tr>
</tbody>
</table>
Results from dye tracer tests
Results from radiotracer tests
Entrance Probe

28 mL/s (laminar)

111 mL/s (turbulent)

249 mL/s (turbulent)

SP A – clean
SP B – pit
SP C – scale
Results from radiotracer tests
Middle Probe

28 mL/s (laminar)

111 mL/s (turbulent)

249 mL/s (turbulent)

SP A – clean
SP B – pit
SP C – scale
Results from radiotracer tests
End Probe

28 mL/s
(laminar)

111 mL/s
(turbulent)

249 mL/s
(turbulent)

SP A – clean
SP B – pit
SP C – scale
Dispersion coefficients
Flow parameters calculated by DTS Pro

<table>
<thead>
<tr>
<th>SP</th>
<th>Flowrate (mL/s)</th>
<th>\bar{t} (s)</th>
<th>V (cm/s)</th>
<th>D (cm²/s)</th>
<th>Pe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>28</td>
<td>18,09</td>
<td>2,21</td>
<td>0,181</td>
<td>1,76 x 10⁵</td>
</tr>
<tr>
<td>A</td>
<td>111</td>
<td>4,68</td>
<td>8,55</td>
<td>0,233</td>
<td>5,46 x 10⁵</td>
</tr>
<tr>
<td></td>
<td>249</td>
<td>2,16</td>
<td>18,52</td>
<td>0,488</td>
<td>5,87 x 10⁵</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>20,17</td>
<td>1,98</td>
<td>0,254</td>
<td>1,25 x 10⁵</td>
</tr>
<tr>
<td>B</td>
<td>111</td>
<td>6,25</td>
<td>6,40</td>
<td>0,371</td>
<td>3,43 x 10⁵</td>
</tr>
<tr>
<td></td>
<td>249</td>
<td>3,42</td>
<td>11,69</td>
<td>0,592</td>
<td>4,84 x 10⁵</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>23,71</td>
<td>1,68</td>
<td>0,327</td>
<td>0,97 x 10⁵</td>
</tr>
<tr>
<td>C</td>
<td>111</td>
<td>7,24</td>
<td>5,52</td>
<td>0,412</td>
<td>3,09 x 10⁵</td>
</tr>
<tr>
<td></td>
<td>249</td>
<td>5,83</td>
<td>6,86</td>
<td>0,638</td>
<td>4,49 x 10⁵</td>
</tr>
</tbody>
</table>
CFD Simulation - Geometry
CFD Simulation – Boundary conditions

<table>
<thead>
<tr>
<th>Material</th>
<th>Mass flowrate (kg/s)</th>
<th>Reynolds Number</th>
<th>Feed pressure (atm)</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure water (constant properties)</td>
<td>0.028</td>
<td>880,074</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.111</td>
<td>3519,757</td>
<td>1.000</td>
<td>Insode tube volume</td>
</tr>
<tr>
<td></td>
<td>0.249</td>
<td>7918,049</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CFD Simulation – 3D Grid
CFD Simulation Results – Streamlines

SP A

Q1

Q2

Q3
Velocities along the centre of the tubes

- Recirculation causes acceleration near the entrance and subsequent deceleration.
- The effect is stronger at higher flowrates.
Conclusions

• Dye tracers are not as effective as radiotracers due to the need of sampling and the lesser frequency of measurements.

• Qualitative differences could be noticed in the tracer response patterns of normal and damaged pipes.

• Scaling was more sensitive to the reduction in the time of transit
Conclusions

- Recirculation at the entrance increases with flowrate.
- Changes in the patterns of the RTD curve were due to discontinuities in the internal surface.
- Tracer dispersion consistently increased as flowrate increases, and the effect is more sensitive for scaling than for pit corrosion.
Conclusions

- Tracers, especially radiotracers, have a potential to detect damages that can introduce a discontinuity in the inner surface of pipes, namely pit corrosion and scaling.
THANK YOU FOR YOUR ATTENTION!