

A TRACER APPLICATION: DETECTING DAMAGE TO OIL INDUSTRY PIPING

J.A.P.Nicácio, R.M. Moreira, A.A. Barreto, A.A.Campangnole

Centre for the Development of Nuclear Technology Brazilian Nuclear Energy Commission

The problem to be attacked

- Massive investments by the oil industry are directed to maintenance and inspection.
- Annual cost of corrosion to the oil and gas industry in the United States alone estimated to be \$27 billion, leading to an estimate of the global annual cost of maintenance as exceeding \$60 billion

ICARST 2017 ¹⁴ International Conference on Applications of Radiation Science and Technology

Main aims of maintenance

- Avoid breaches in the production process.
- Maximum advantage of time, personnel and tool resources obtained during planned pauses for maintenance.
- Avoid large negative impacts on economic achievement.

To comply with this:

• Equipment inspection procedures on a continuing basis emerge as crucial.

• The search for new inspection techniques turned into a differential in the oil industry.

Hence, some conjectures:

 Could tracers also be of value in detecting internal damage to closed pipes subject to aggressive environments such as oil processing plants?

• Could they be added to the present roll of nondestructive inspection techniques?

Corrosion and Scaling

- Two of the most deleterious damages to the structural properties of equipment components in oil refineries.
- Requiring unpostponable intervention and production stoppage.

Corrosion and Scaling

- Despite progresses have been achieved in the scientific knowledge of these processes, problems persist.
- They may even become more severe, due to the heavier, and therefore more acidic, crude oils being introduced in the refining processes.

Pit corrosion

Pit corrosion

• Internal aspect:

ICARST 2017 ¹ International Conference on Applications of Radiation Science and Technology

Pit corrosion

(50 X)

Scaling

• Iron hydroxide scales:

Lange Contract Contra

Scaling

• Scaling at a cooling water pipe

Methodology: Tracer impulse response

- Residence time distribution: $E(t) = \frac{C(t)}{\int_0^T C(t)dt}$
- Mean residence time: $\bar{t} = \int_0^T t \cdot E(t) dt = \frac{V}{Q}$

Simulacra pieces

Simulacra pieces

Assembly for Radiotracer test

ICARST 2017 I^a International Conference on Applications of Radiation Science and Technology

Assembly for Dye Tracer test

GGUN-FL Fluorometer

ICARST 2017 ¹⁴ International Cohference on Applications of Radiation Science and Technology

DTS-Pro Software

• Convolution of entrance and exit pulses

$$y(t) = \int_0^t E(t') \, x(t-t') \, dt'$$

DTS-Pro Software

			Parameters		Optimisation		
	7		Tau	18.09		0	0
		1	C Volume	0	- F	0	0
	1	1	3	D	- F	a	0
			Tm	0	- F	d	0
			ĸ	0	Г	0	0
1.1	15		Abha	(i	F	0	0
			Pe	1,7685	· F	0	0
1.0						[-

Test flowrates

Identification	Flowrate (mL.s ⁻¹)	Reynolds Number	Flow regime
Q1	28	880	laminar
Q2	111	3519	turbulent
Q3	249	7918	turbulent

Results from dye tracer tests

SP A – clean SP B – pit SP C – scale

Time (s)

SP A – clean SP B – pit SP C – scale

Dispersion coefficients

Flow parameters calculated by DTS Pro

SP	Flowrate (mL/s)	$ar{t}$ (s)	V (cm/s)	D (cm ² /s)	Pe
A	28	18,09	2,21	0,181	1,76 x 10 ⁵
	111	4,68	8,55	0,233	5,46 x 10 ⁵
	249	2,16	18,52	0,488	5,87 x 10 ⁵
В	28 ·	20,17	1,98	0,254	1,25 x 10 ⁵
	111	6,25	6,40	0,371	3,43 x 10 ⁵
	249	3,42	11,69	0,592	4,84 x 10 ⁵
С	28 -	23,71	1,68	0,327	0,97 x 10 ⁵
	111	7,24	5,52	0,412	3,09 x 10 ⁵
	249	5,83	6,86	0,638	4,49 x 10 ⁵

CFD Simulation - Geometry

CFD Simulation – Boundary conditions

Material	Mass flowrate (kg/s)	Reynolds Number	Feed pressure (atm)	Domain
	0,028	880,074		
Pure water (constant properties)	0,111	3519,757	1,000	Insode tube volume
	0,249	7918,049		

CFD Simulation – 3D Grid

CFD Simulation Results – Streamlines

SP A

Velocities along the centre of the tubes

- Recirculation causes acceleration near the entrance and subsequent deceleration.
- The effect is stronger at higher flowrates.

ICARST 2017 ¹ International Conference on Applications of Radiation Science and Technology

ICCARST 2017 I^a International Conference on Applications of Radiation Science and Technology

Conclusions

- Dye tracers are not as effective as radiotracers due to the need of sampling and the lesser frequency of measurements.
- Qualitative differences could be noticed in the tracer response patterns of normal and damaged pipes.
- Scaling was more sensitive to the reduction in the time of transit

Conclusions

- Recirculation at the entrance increases with flowrate.
- Changes in the patterns of the RTD curve were due to discontinuities in the internal surface.
- Tracer dispersion consistently increased as flowrate increases, and the effect is more sensitive for scaling than for pit corrosion.

Conclusions

 Tracers, especially radiotracers, have a potential to detect damages that can introduce a discontinuity in the inner surface of pipes, namely pit corrosion and scaling.

THANK YOU FOR YOUR ATTENTION!

