

Next-generation Fast-Neutron/X-ray Scanner for Air Cargo Interrogation

Nick Cutmore, John Eberhardt, Yi Liu (CSIRO) Rhys Preston, James Tickner (Chrysos Corporation Limited) Zong Chunguang, Li Jianmin, Li Yuanjing (Nuctech Company Limited/Tsinghua University)

www.csiro.au

Fast neutron and X-ray imaging

• Developed between CSIRO and Nuctech for scanning large cargo

> Suited to large structures, but scalable to smaller items

- Cargo is highly variable and heterogeneous making it complex to interpret a single X-ray image
 - Combined x-ray and neutron data simplifies the interpretation of complex images involving multiple material types such as mixed inorganic and organic compounds
- Strong constraints on scanning time, footprint and easeof-use

Evolved a compact high speed imaging solution with sophisticated imaging tools for interpretation of complex data

Implications for technology solutions in consolidated cargo inspection

- Need material discrimination capability
 - For a wide range of material types
 - With resolution of a few mm's
- Use commercial radiation sources
 - Radioisotopes (not preferred)
 - X-ray tubes or X-ray LINACs
 - Neutron generators
- Image analysis:
 - Overlay material information onto high resolution X-ray images for mm resolution
 - Sophisticated and rapid image manipulation tools developed
 - Automated and semi-automated image analysis tools developed

Technology landscape

"Threat detection"

Prototype to product

- Prototype system evolved over 4 years
- Commercial partner selection 2 years
- Product development 3 years
- Complex landscape of products where do we fit?

 Competitive tension between technology and process driven industry

Our approach

- Collect high resolution neutron and X-ray radiographic images
- X-ray data provides information about density of material in beam
- Neutron/X-ray interaction cross-section ratio provides information about the average composition of the material in the beam
- Vastly more sensitive than dual-energy Xray approach

Combined X-ray/neutron imaging

Collecting X-ray and neutron images

Compact neutron generator

- Electronic generator produces 14 MeV neutrons only when energised
- Medium-output (3×10⁸ n/s) [pulsed generator]
 - Low capital and operational cost
 - Digital control
 - "Return to base" maintainence
 - Reduced shielding footprint easier to deploy
 - Long tube life at 3×10⁸ n/s

Improved neutron detectors

Effective and fast imaging required an improved neutron detector

- CSIRO/Nuctech technology development over past decade
- Basic detector element comprises plastic-scintillator, solid-state photodetector, discriminators and counting electronics
- Main drivers were increasing efficiency and reduced cost

Mark 2	Mark 3
960 detectors	1440 detectors
10% efficiency	30% efficiency
	×5 overall gain

X-ray/neutron image processing

- Raw neutron images have significant artefacts:
 - Noise, due to low neutron intensity
 - Cross-talk due to scattering, which reduced contrast
- CSIRO has developed new, non-linear filtering techniques to decrease noise and increase image definition
- Latest generation of filters allow us to increase imaging speeds 5-10 times whilst preserving image quality

Mark 3 scanner footprint

- Incorporates 6 MV X-ray LINAC and 14 MeV neutron source
- Modular lower cost shielding (steel and recycled materials)
- Integration of X-ray and neutron systems in operation and image analysis
- No exclusion zones exterior to scanner footprint

Image example

Image example

Material identification

- 'unique' R-value based image analysis relies upon:
 - High-resolution images
 - Good penetration
 - Good image filtering (uniform colour for uniform materials)
 - Image manipulation tools
 - Background-stripping can correct for overlap to reveal true composition

Operational experience

- Provides additional information that more quickly defines the makeup of complex bulk cargo
- Overlapping of the transmission images is not always adequately resolved for complex cargo
- Further refinements such as additional views providing limited CT would enhance current technology
 - Limited View / Angle CT Reconstruction
 - 3D reconstruction of limited view and/or limited angle CT data, reduce current CT scanning time and dosage

Industrial Process Imaging?

Neutron/X-ray imaging, developed over more than 10 years, is potentially applicable to industrial applications and provides advantages over X-ray imaging alone

- Material recognition allows recognition and mapping of multicomponent (organic/inorganic) systems at high resolutions (mm's)
- > High rate imaging is compatible with the imaging of rapidly changing systems
- Developments in neutron source optimisation, detectors, shielding and image analysis equally apply in industrial applications
- Developed concepts are scalable and could be deployed in a much smaller footprint suited to specific industrial applications

ICARST 2017

1ª International Conference on Applications of Radiation Science and Technology

Thank you

CSIRO Mineral Resources Dr Nick Cutmore Research Director

- t +61 2 9710 6704
- e nick.cutmore@csiro.au
- w www.csiro.au

www.csiro.au

