

Gamma Irradiator Technology: Challenges & Future Prospects

AK Kohli

Raja Ramanna Fellow

Department of Atomic Energy

Gamma Irradiators

- Gamma Cells, Gamma Chambers
- Blood Irradiators
- Pilot Scale R & D Irradiators
- Industrial Irradiators
 - **Bulk irradiation-**

Sterilization of medical products, Hygienization of spices, food irradiation for preservation or safety

Simple, rugged, convenient, easy to maintain, reliable

World's First Gamma Irradiator

Stuttgart, Germany: 1958

Irradiation of Spices

Gamma Irradiators in the World

- No. steadily growing in last 6 decades
- Currently > 340 industrial irradiators
- Highest addition in the beginning of 21st Century
- China leading country
- Decommissioning rate now picking up

Safety & Economy →

+ Security & Convenience

Challenges

ICARST 2017 1st International Conference on Applications of Radiation Science and Technology

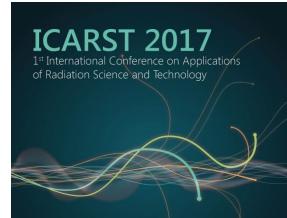
Safety Related Issues

Contamination due to Leakage of Radioactive Sources

Contamination

- 1982: Dover
 - Damaged Co-60 Source
 - Contamination of pool water

- Water released to the facility floor and surrounding soil


- No ground water contamination or public exposures

¹³⁷Cs Irradiators

All sources from DOE of same design

- Westerville, Ohio 1985- Cat IV
- Northglenn, Colorado 1985- Cat I
- Decatur, Georgia 1986- Cat IV
- Lynchburg, Virginia 1986-Cat III

Decatur:1988

- Cs in CsCl form

- Highly soluble & corrosive

- Insertion in and out of pool causing thermal shock

- Contamination was discovered in employee's vehicles, their residences and several of products which were shipped from the irradiator.

- Surrounding the building of the irradiator, soil contamination was also found.

- 8 ci of Cs-137 had leaked

(out of 50,000 ci present in the pencil)

Implications

- USNRC suspended all operations at wet storage irradiators using Cs-137 source
- Denied source certificate to GrayStar which planned to use 3.3 Mci of Cs-137 in "caked powder" form for a dry storage food irradiator

In Vitrified form very low Sp. Activity Unsuitable for Industrial Irradiators

Standard Adopted

Doubly Weld Encapsulated Austenitic Stainless Steel Ni Coated Co-60 Sealed Sources

Operation & Maintenance Related Issues

Operation & Maintenance Related Issues

- Material Handling Related
 - Fatalities, morbidities
- Overexposures due to entry of personnel with Source Exposed in the irradiation area
 - Inadequacy or bypassing of Safety Interlocks
 - Ignoring or misinterpretation of alarms
 - No. of fatalities, morbidities

Safety Features Added during its Journey

- Source Shroud
- Multiple Electrical Safety Interlocks
- Mechanical Safety interlock on the Cell Door
- Pressure Plate
- Wire cable Pull
- Positive Indication of Source in Water Pool
- Shielded View Window on Cell Door
- Nickel Coated non-leachable Capsules in Doubly Encapsulated in SS Welded Pencils

Current Designs Fail Safe & Fool Proof

Co-60 Shortages & Economics

- Rapid growth of gamma irradiators in the early 21st century
- China >44, India 9 in 1st decade
- No addition of ⁶⁰Co production facilities
- Price of ⁶⁰Co started going up rapidly
- EB/X-ray based system technology had matured with reduction in their investment cost
- Places where large volumes were available, EB/X-ray based technology became attractive

Radioactive Source Security

Security during Operation & Maintenance

- Inherent Security
 - Lethal to go near the source
 - Thick concrete labyrinth cell
- Large inventory, highly penetrating long half-life
- Threat of getting stolen for making RDDs
- Dismemberment due to explosion (carton itself carrying explosive material)
- Physical Protection Measures
- Emergency Preparedness against fire, flooding, earthquake, rioting
 - Procedures for management before issue of license for operation
 - Co-ordination with police,
 disaster management authorities

Security during Transportation

- Restriction in maximum quantity which can be transported by air to 30kci
- Long distances involved.
 Multi country, multi modal transportation-Transhipments
- Transport through disturbed or sensitive areas
- Uncertainty in feasibility and costs involved in transportation of decayed sources
- Denial of shipments

Decommissioning

- Long time between purchase of new and return of decayed sources
- Willingness of supplier to accept back the decayed sources
- Requirement of large no, of shipping flasks
- Long distances involved, multi-country involving transhipment and multi-modal=
 Denial of Shipments

of Radiation Science and Technology

Concurrent Parameters

- Economics
 - Capital & Running Expenditures
 - Indigenous Manufacturers (Equipment & Co-60)
 & Management of Disused Sources
- Irradiation Volumes Expected
 - Medical
 - Food with similar dosage and handling requirements
- Security Implications
 - Environment Prevailing
 - Stringency of Regulations
- Public Acceptance

Future

- Gamma irradiators-rugged, safe, economical?
- Accelerators becoming cost competitive
- Choice for Quality Products going up, Volumes going up
- Security Issues gaining importance needing higher expenditure & attention
- Public acceptance for radioactive materials?
- Decommissioning-Return of sources, large no. of sources, shipping flasks, transportation

Country & Location Specific

Unless economics is overwhelmingly in favour of Gamma Irradiators, Accelerator based systems are bound to prevail ICARST 2017 It International Conference on Applications of Radiation Science and Technology

Thank you for your attention

