ICARSI 201/ 1st International Conference on Applications of Radiation Science and Technology

RADIATION STERILIZATION OF DEVICES AND SCAFFOLDS FOR TISSUE ENGINEERING

Celina I. Horak National Commission of Atomic Energy Argentina

The selected method for sterilization of scaffolds and medical devices should :

- Effectively sterilize
- Maintain structural and biochemical properties, and
- Ensure that those product will fulfill their intended purposes poststerilization

Sterilization techniques available for scaffold and medical devices:

Method		Advantages	Disadvantages
Heat	Steam	Simple, fast, effective, high penetration ability, no toxic residues	High temperature, wet process, affect the structural properties of biodegradable polymers
Irradiation	Gamma	High penetration ability, low temperature, effective, easy to control, no residue, dry	Induce structural properties changes, dose rate is lower than electron beams, long time
	E-beam	Low temperature, easy to control, no residue, fast, dry	Induce structural properties changes, electron accelerator needed, low penetration ability
	UV	Fast, low temperature, low cost, no toxic residues	Not effective, induce structural and biochemical properties changes under long exposure duration
Plasma	Plasma	Low temperature, improved cell interaction, increasing wettability on surface of biodegradable polymers, fast	May cause changes in chemical and mechanical properties of polymers, leave reactive species
Chemical Treatment	EtO	Effective, low temperature	Induce structural property change, leave toxic residue, flammable, explosive, carcinogenic

(X. Cao et.al.)

Source: Supply chain management Procurement sourcing medical device industry (2015)

The sterilization techniques should be precisely controlled and evaluated case by case

Strategies to improve the sterilization process

PROCESS Apply a validated radiation sterilization process, and using updated methodologies for dose setting

PROCESS Apply a validated radiation sterilization process, and using updated methodologies for dose setting

PROCESS Apply a validated radiation sterilization process, and using updated methodologies for dose setting

Radiation sterilization doses 2005 – 2016

Implement a risk management assessment for scaffold and devices manufacturing

RISK

RISK

Implement a risk management assessment for scaffold and devices manufacturing

NATURAL POLYMERS PROTEINS (collagen, gelatin, fibrinogen, elastin, keratin, actin, myosin) POLYSACCHARIDE S (cellulose, amylose, dextran, chitin, and

glycosaminoglycans

SYNTHETIC BIODEGRADABLE POLYMERS (PLA, PGA, PLGA copolymers, PCL,)

SYNTHETIC NON-BIODEGRADABLE POLYMERS

(Bioactive ceramics: HAP, TCP, silicate and phosphate glasses) METALIC MEDICAL DEVICES Steel, Titanium Select a different Sterility Assurance Level, to lower the radiation sterilization dose

Regulatory bodies recognize the sterility assurance level (SAL) of 10⁻⁶ for a device to be labeled "sterile"

SAL

• The **Medical devices** must be sterile, biocompatible and stable under physiological conditions during the time it would be implanted.

• An **scaffold** should act as a temporary matrix for cell proliferation and extracellular matrix deposition, with subsequent ingrowth until the tissues are totally restored or regenerated.

Conclusions

• Radiation sterilization fulfill most of the requirements mentioned before:

We can have a controlled process, and using the most properly sterilization dose. The present standards allow doses as low as 11 kGy to reach SAL 10-6

Risk is the KEY. A very well implemented risk assessment management will show to the manufacturers the better step to apply the methodology

When we need to reduce the dose even more, we should find the SAL that fit with my product/process

THANK YOU FOR YOUR ATTENTION!

