The Application of Computational Fluid Dynamics (CFD) for modelling flow and Visualization in a cement mill and Experimental Residence Time Distribution (RTD) Validation using Radiotracer Technology

H.A. Affum1*, I.I. Mumuni1, C.P.K. Dagadu1, S. Yamaoh1

1National Nuclear Research Institute, Ghana Atomic Energy Commission, P. O. Box LG 80, Legon-Accra, Ghana

1* h.affum@gaecgh.org

\textit{1}st \textit{International Conference on Applications Of Radiation Science and Technology (ICARST), Vienna, Austria, April 24-28, 2017}
Background 1

- The grinding process is the most energy-consuming operation in cement production.
- 40% of the total energy used for the production of a ton of cement goes into clinker finish grinding.
- Adopting effective strategies to optimize operating parameters of the mill such as retention time is of critical importance if a more efficient cement grinding operation is to be achieved.
- Computational fluid dynamics (CFD) is known for its capabilities in simulating and visualizing the motion of material inside process equipment.
- It deals with the numerical solutions of the governing equations of fluid flows and enables a fairly accurate calculation of the flow field in process equipment.
Background 2

- The Ghana Cement (GHACEM) Plant in Tema is one of Ghana’s largest manufacturing establishments for production of cement with a total capacity of 2.4 million tons per annum.
- GHACEM produces cement using three basic raw materials - 90% clinker, 5% limestone and 5% of gypsum
- Clinker fed to the mill is crushed and milled by attrition between steel balls which are accelerated via rotation into collision with the clinker
- GHACEM employs a closed circuit system

Fig 1. Diagram of closed-circuit Milling system
Objective

• To simulate the flow in the mill using computational fluid dynamics (CFD) for flow visualisation.

• Attempt to validate the CFD model of the mill flow using radiotracer Residence Time Distribution (RTD) data.
Experimental Set-Up 1

Table 1. Mill Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>3.6 m</td>
</tr>
<tr>
<td>Length</td>
<td>11.4 m</td>
</tr>
<tr>
<td>Grinding Capacity</td>
<td>65 ton/h</td>
</tr>
<tr>
<td>Mill Speed</td>
<td>16 rpm</td>
</tr>
</tbody>
</table>
Experimental Set-Up 2

Fig 4a: Detector at mill inlet
b. Mill
c. Mill outlet detector

4d. Ludlum multichannel analyser
e. Ludlum software interface
Numerical Simulation Set-Up 2

• A CFD-DPM (Computational Fluid Dynamics – Discrete Phase Model) coupling model was used.

• The clinker-steel and air mixture was modelled as a two-phase eulerian model.

• Due to the rotation of the mill (high rotational Reynolds number), the k-ε RNG turbulent model was used.

• The equations of conservation of mass, momentum and energy were solved in a rotating frame of reference.
Numerical Simulation Set-Up 1

Table 2. Simulation Solution Conditions and Methods

<table>
<thead>
<tr>
<th>Solution Conditions and Methods</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure-Velocity Coupling</td>
<td>SIMPLE</td>
</tr>
<tr>
<td>Spatial Discretization of Gradient</td>
<td>Green Gauss cell based</td>
</tr>
<tr>
<td>Pressure</td>
<td>Standard</td>
</tr>
<tr>
<td>Momentum,</td>
<td>First order upwind, QUICK</td>
</tr>
<tr>
<td>Turbulent Kinetic Energy, Turbulence Model</td>
<td>First order upwind QUICK k-ε RNG</td>
</tr>
<tr>
<td>Turbulent Dissipation Rate</td>
<td>First order upwind, QUICK</td>
</tr>
<tr>
<td>Solution Initialization</td>
<td>Standard, from inlet</td>
</tr>
<tr>
<td>Average simulation time</td>
<td>60 hrs</td>
</tr>
<tr>
<td>Number of iterations</td>
<td>10000</td>
</tr>
<tr>
<td>DPM</td>
<td></td>
</tr>
<tr>
<td>Number of particles injected</td>
<td>10000</td>
</tr>
<tr>
<td>Number tracked</td>
<td>7560</td>
</tr>
</tbody>
</table>

Fig 6. Flow chart of numerical simulation set-up
The coincidence of the velocity profiles of cell sizes 0.2 (114202 elements) and 0.15 (404100 elements) along selected sections.

Variation of air streamwise velocity.

Clinker velocity increases sharply from the inlet and reaches its maximum near the outlet.
Results and Discussion 2

✓ Contours of turbulent eddy viscosity represent the extent of mixing

✓ Mixing was not uniform throughout the mill as indicated by varying magnitudes of eddy viscosity in the mill.

✓ Mixing better at mid-section

Fig 8. Eddy viscosity: a. near mill inlet
b. At mid-section
c. Near mill discharge
d. Eddy viscosity at symmetry
✓ Detectors D6 close to D5. It ‘saw’ the tracer just as it approached the injection point.
✓ This resulted in two parasitic peaks
✓ Experimental MRT of the mill was found to be 16 min

Fig 9. Experimental response curves of detectors around the mill
CFD MRT was 25 min, shorter than design MRT, implying shorter contact/milling time.

This suggests the presence of dead zones or channeling within the mill as indicated by the disparity in the MRTs.
A coupled CFD-DPM model has been successfully employed to simulate the flow in a cement mill.

Eddy viscosity contours revealed that mixing is better in the mid-section of the mill than the outlet and inlet.

The MRT predicted by the model compared better with the experimental MRT than the design MRT.

The approach used in this study gives a pictorial images of mixing in the mill and is useful for visualization.
References

Acknowledgement

• International Atomic Energy Agency for technical and financial support
• ICARST Planning Committee
• Ghana Cement (GHACEM)
• Staff of ENSIC Laboratory in Nancy, France
• Staff of Nuclear Application Centre, NNRI, GAEC
• The audience