DE LA RECHERCHE À L'INDUSTRIE

Conservation of the piezoelectric response of PVDF films under irradiation

<u>G. Melilli</u>, D. Lairez, D. Gorse, E. Garcia-Caurel, A. Peinado, O. Cavani, B. Boizot, M-C Clochard

-Renewable harvesting energy

Polymer piezoelectricity

-Actual demand: development of piezogenerator flexible for portable devices

Material of interest: Poly(vinylidene fluoride) (PVDF)

piezoelectric PVDF membrane has experienced a resurgence of interest for **energy harvesting**.

decrease of energy consumption
Robustness and flexibility allows an easier integration respect to conventional piezoelectric materials such as PZT ceramics

How to enhance piezoelectric properties in miniaturized objects?

- Multilayers or nanostructuration

- Structural modification : SHI irradiation and e-beam*,**

* Zhang et al, Science 280 (1998) 2101-2104 ; ** Giegerich et al, IEEE Trans., 7, 3 (2000) 353-359

PVDF

PVDF polymorphism: crystalline phases α , β , δ and γ phases.

Piezoelectric effect

Curie Brothers Direct piezoelectric effect 1880

Piezoelectricity is defined as the aptitude to convert mechanical strain in electrical charge and vice versa.

Constitutive equations

$$D = \varepsilon^{T} E + d_{33} T$$
$$S = d_{33} E + s^{E} T$$

- D : electric displacement (C.m⁻²)
- E : electric field (V.m⁻¹)
- T: stress (N.m⁻²)
- S : strain
- $\boldsymbol{\epsilon}^{\mathsf{T}} : \text{dielectric constant}$
- s^E : compliance (inverse of the young's modulus)

 d_{33} : piezoelectric constant (m.V^{-1} or C.N^{-1}) in z direction

Piezoelectric effect

Direct piezoelectric effect (sensors)

Curie Brothers Direct piezoelectric effect 1880

Piezoelectricity is defined as the aptitude to convert mechanical strain in electrical charge and vice versa.

Constitutive equations

$$D = \varepsilon^{T} E + d_{33} T$$
$$S = d_{33} E + s^{E} T$$

D : electric displacement (C.m⁻²)

E : electric field (V.m⁻¹)

T: stress (N.m⁻²)

S : strain

 $\boldsymbol{\epsilon}^{\mathsf{T}}: \text{dielectric constant}$

s^E : compliance (inverse of the young's modulus)

 d_{33} : piezoelectric constant (m.V⁻¹ or C.N⁻¹) in z direction

Piezoelectric effect

Inverse piezoelectric effect (Actuators)

Curie Brothers Direct piezoelectric effect 1880

Piezoelectricity is defined as the aptitude to convert mechanical strain in electrical charge and vice versa.

Constitutive equations

$$D = \varepsilon^{T} E + d_{33} T$$
$$S = d_{33} E + s^{E} T$$

D : electric displacement (C.m⁻²)

E : electric field (V.m⁻¹)

T: stress (N.m⁻²)

S : strain

 $\boldsymbol{\epsilon}^{\mathsf{T}}: \text{dielectric constant}$

s^E : compliance (inverse of the young's modulus)

 d_{33} : piezoelectric constant (m.V⁻¹ or C.N⁻¹) in z direction

Bi-oriented PVDF film : an easy way to obtain β -PVDF

E-beam and SHI irradiation

Primary beam interacts with valence electrons generating defects.

Investigated e-beam range doses: 5, 10, 25, 50 and 100 kGy (*Gy absorption of one joule of radiation energy per kilogram of matter)

Radicals + qas release

Irradiations were performed under He atmosphere

Crosslinking

Investigated doses for SHI irradiation:

0.076 kGy, 0.76 kGy and 7.6 kGy

higher molecular mobility.

low doses range, leads mainly to main-chain scission

24/04/17

н

Defects in PVDF:

DE LA RECHERCHE À L'INDUSTRIE

□ Characterisations

Home-made experimental set-up

Home-made experimental set-up

Output voltage versus pressure

Output voltage under cycling bending stress condition

Results

□ The energy conversion efficiency is the ratio between the total electrical energy (W_e) and the total mechanical energy (W_m).

The conversion efficiency was found to be around 0.8%

Electrical efficiency:

Load=0.6Bar, f=0.4Hz, R = $1M\Omega$, tested volume=5.73E-10m³

DE LA RECHERCHE À L'INDUSTRIE

□ Characterisations

Dielectric measurement

Permettivity is directly linked with the dipole moment density of the sample:

$$D = \varepsilon_r \varepsilon_0 E$$

□No variation of the permittivity with the doses.

The density of the dipoles not changes with the range doses investigated

Freq.	ε _r PVDF	$\varepsilon_{\rm r}$ PVDF irr.				
[kHz]	ref	5kGy	10kGy	25kGy	50kGy	50kGy
0,108	12,578	12,587	12,538	11,846	12,692	12,398
1,134	12,224	12,182	12,029	11,498	12,184	11,871
11.952	11,732	11,62	11,419	10,966	11,551	11,182

Elastic Modulus

□ The polymer is stressed in the eleastic regime.

The polarization generated at applied stress T is proportional to the piezoelectric coefficient d_{33} :

$$D = d_{33}T$$
$$d_{33} \propto \sqrt{\frac{\varepsilon_{33}^T}{Y_{33}^E}}$$

The young's modulus is not affect by the irradiation, except for 10 and 50kGy

Combined effect of crosslinking and chain scissions lead to increase the young's modulus at 10 and 50 kGy

Crystallinity content by DSC

$$X_c(\%) = \frac{H_f}{H_{0f}} \cdot 100$$

 ${}^{*}\mathbf{H}_{\!f}$ is the heat of fusion for the tested sample

 $*H_{of}$ =104.7 J/g (Nakagawa and Ishida, 1973), the heat of fusion for the 100% crystalline sample.

□ shift of the melting peak with irradiation dose increase meaning creation of smaller crystallites

□The crystalline content reaches the maximum at 10 kGy. At higher irradiation dose (10-20kGy gel dose) Competition crosslinkings/chain scissions

24/04/17

X-ray diffraction

Comparison of the area of the crystallintes peak fits for different doses.

$$\beta \ Fraction \ (\%) = \left(\frac{A_{\beta}}{A_{\beta} + A_{\alpha}}\right) * 100$$

 $\label{eq:rescaled} \begin{array}{c} \square \mbox{ Referring to DSC data the degree of } \\ \mbox{ crystallinity of the } \alpha \mbox{ and } \beta \mbox{ phases } \end{array}$

Dose	Degree XX	$\% \alpha$ phase	Τ	%βphase
[kGy]	from DSC (%)			
0	35,08	10,07952	Τ	25,00048
5	40,75	9,68688	Τ	31,06312
10	42,92	10,56043	Τ	32,35957
25	40,74	11,05309	Τ	29,68691
50	37,25	10,10486	Τ	27,14514
100	35,33	8,99655		26,33345

phase	(hkl)	2Θ	
β	(200) (110)	20.668 20.828	
α	(110)	20.119	

□SHI and e-beam irradiation not affect the electrical efficiency of the PVDF in a range between 0 and 100kGy. The dipoles density is maintained under relative strong doses (100kGy) and the elastic modulus not shows relevant variation in that range doses.

Chain scissions are responsable to increase the crystallization and in particular between 5 and 10kGy (before the **gel dose**). XRD technique combined with the DSC shows that the increase of crystallinity correspond to the increase of the β phase.

 \Box The increase of the β phase not correspond with an increase of the piezoelectric response.

The sensitivity of the instrument is not enough to detect the variation of the

piezo-response of the irradiated PVDF.

High electric field needs to polarized the additional β phase: Hysteresis loops will be performed.

Perspective

Exploiting SHI irradiation...

Thank you for the attention

Output voltage versus pressure

Output voltage peak vs Pressure

Output voltage versus pressure

Piezoelectric PVDF is considered as capacitor with a *RC time constant* τ

Output voltage peak vs Pressure

