

International Conference on Applications of Radiation Science and Technology (ICARST-2017) 24-27 April 2017, Vienna

Industrial application of electron beam (EB) irradiation for wastewater treatment in China

Dr. Shijun HE

Tsinghua University, Beijing, P. R. China

Outline

- Background
- Lab-scale results
- Industrial-scale EB for textile wastewater treatment
- New progress: Decomposition of antibiotics and antibiotics resistance genes by irradiation
- Conclusions

1. Background

1.1 Wastewater pollution in China

- In 2014, the total domestic wastewater discharge was 72 billion tons.
- Industrial wastewater discharge was 20 billion tons (equal to 29%).
- Textile is the third largest source of industrial pollution with high COD concentration and various refractory compounds.

Industrial wastewater discharge

1. Background

1.2 Textile wastewater treatment technologies

- Advanced Oxidation
 Processes are a family of methods for hazardous
 compounds destruction
 making use of the hydroxyl radical.
- With few exceptions, •OH can oxidize practically any organic compound dissolved in water.

Principle of wastewater treatment by EB irradiation

In dilute aqueous solutions, primary effect of irradiation is radiolysis of water

$$H_2O \longrightarrow \bullet H, e_{aq}^-, \bullet OH, H^+, OH^-, H_2O_2, H_2$$

G (•H) = 0.06 μ m J⁻¹; G(•OH) = 0.28 μ m J⁻¹; G(e_{aq}⁻) = 0.28 μ m J⁻¹

Electron beam facility used

IBA Rhodotron : 10 MeV, 10 mA

2. Lab-scale results Case study One

- Sample source: Shengfang, Shaoxing city, Zhejiang Province
- Major products: umbrella cloth , lining cloth , Case fabric
- Existing treatment process : Biological method+ physicochemical process + membrane separation (UF+RO)
- Main problems: Unstable performance , serious membrane fouling

Case study One

Sample	COD (mg/L)	Color (times)	Conductivity (us/cm)
wastewater before RO	117 ± 4	25	1197
EB treated	24~38 (1kGy)	5	1683
RO rejected solution	259 ± 26	40	2960
EB treated	86 (1kGy)	20	2863

Case study Two

- Sample source: Shenzhou, Ningbo city, Zhejiang Province
- Major products: knitted garments
- > Existing treatment process :

Case study Two

	COD (mg/L)	Color (times)	SS (mg/L)	Hardness (mg/L)	рН
Effluent	180-200	100	28-35	125-130	6-9
EB treated	<30	8-10	<5	120-125	7-8
Standards for reuse	≤50	≤25	≤20	≤450	6-9

2. Lab-scale results Case study Two

> Absorbed dose: 1kGy

 \geq Operation cost: 2.47 RMB / m³ (include energy consumption, reagent and sludge treatment)

Case study Three

Sample source: Hengchang, Jinhua city, Zhejiang Province

Case study Three

	COD (mg/L)	Color (times)	SS (mg/L)	TN (mg/L)	NH ₃ -N (mg/L)	TP (mg/L)	рН
Biological effluent	150- 200	32-40	150	6-8	3-5	1.5-1.9	6-9
EB treated	<50	<10	3-5	4-6	1-2	<0.2	7-8
Discharge standard	<60	10	20	<12	<8	<0.5	6-9

Case study Three

> Absorbed dose: 1kGy> Benefits:

Now, the operating cost (including ozonation) is 3.95 RMB/m³. if changed to the new process of EB irradiation ,the operating cost will decrease to 2.45 RMB/m³.

- Lab- scale experiments: from Nov., 2015 to Mar., 2016
- Industrial plant Construction: from May, 2016 to Dec., 2016
- Capacity designed: 2000 m³/d (one injector)
- Objectives: EB (discharge), EB+RO (10 m³/d for high quality reuse)

Capacity: 2000 m³/d (one injector)

EB Accelerator: 1.5 MeV, 60 mA

Treatment: Biological method-EB-Flocculation-Sedimentation

Effluent: COD < 50 mg/L, Color < 10 times

Injector: 1500mm X 4 mm

Absorption tower for irradiated air

(1)Make advantages of highly reactive radicals and ozone in the irradiated air to improve wastewater treatment

(2) Reduce ozone (O_3) emission into the air at the same time

Regulating tank

Flocculation and Sedimentation

Chemicals Storage

米前で 🖽 余 "司"司97% 🔲 09:36

3. Industrial-scale EB for textile wastewater treatment

 \equiv

Reports

/ China's First Wastewater

Plant Using Radiation Opens

China's First

Wastewater

Plant Using

0

 \triangleleft

X 中国广核集团

11日存立 11日存立

工业废水处理现重大 技术突破!中国首个 电子束辐照处理工业 废水示范工程启动运 行

2017-03-15 中国广核集团

近日,	国际原子	~能机构
(IAEA)	发布消息利	了,中国首
\bigtriangledown	0	

4. New progress: decomposition of antibiotics and antibiotics resistance genes by irradiation

Visit Kelun Pharmaceutical Manufacturer (4th March 2017, Xinjiang Province) Penicillin Waste (10% solid)

4. New progress: decomposition of antibiotics and antibiotics resistance genes by irradiation

Irradiation-induced decomposition of Penicillin						
	Penicillin residual- (mg/kg)			Penicillin residual- (mg/kg)		
Dose (kGy)	Harbin Institute	Tsinghua				
	of Technology	University				
0	50.7	53.3 ± 2.3				
1	13.6	_				
2.5	0	13.7±15.8				
5	0	22.1+8.0				
7.5	0	_				
10	0	13.2±5.6				

Antibiotic resistance genes of Penicillin (10% of solid)

Dose	TEM	OTY	CLIV	
(kGy)		UIX	500	
0	-	+	-	
1	-	+	-	
2.5	-	+	-	
5	-	+	-	
7.5	-	+	-	
10	-	-	-	

4. Conclusions

- Lab-scale results showed that EB is an effective method to purify the textile and dyeing wastewater.
- Since this March 2017, China first industrial-scale wastewater treatment plant has been established in the city of Jinhua, using electron beam irradiation in combination with conventional biological methods.
- The maximum capacity is 2000 m³ per day at a dose of 1 kGy. The running costs, including energy consumption, chemicals and workers salaries, is 0.35 US\$/m³ for wastewater reuse.
- EB or gamma irradiation is a promising method to decompose antibiotics and antibiotics resistance genes.

5. Acknowledgements

◆中国同位素与辐射行业协会的常务理事单位◆国际辐射联合会(iiA)理事单位

5. Acknowledgements

- IAEA Technical Cooperation Project-Treatment of industrial wastewater by electron beam accelerator and biological methods (CPR1008, 2012-2013)
- Coordinated Research Project, IAEA (Research contract No.16428)

THANK YOU!