

Process Control Methods in Radiation Technologies

András Kovács

IN STREET

Nuclear Security Department Centre for Energy Research Hungarian Academy of Sciences

NAMES OF TAXABLE PARTY.

Radiation Processing Applications

• Radiation sterilization: 25 - 50 kGy

• Radiation crosslinking : 10 – 200 kGy

• Food irradiation:

50 Gy - 10 kGy

• Environmental protection: 1 – 10 kGy

Dosimetry Principles

- In radiation processing, validation and process control depend on the measurement of absorbed dose.
- Determination of absorbed dose in product specific dosimeter systems;

- Measurements of absorbed dose shall be performed using a dosimetric system or systems having a known level of accuracy and precision.
- The calibration of each dosimetric system shall be traceable to an appropriate national standard.

RCH

Validation and Process Control

To assure that

- the necessary (biological, chemical, physical) effect is achieved and
- the radiation technology is performed safely

the **RELATIONSHIP** between

machine parameters of irradiation facilities

(like dwell time, position of source rack, electron energy and current, conveyor speed, scanning width and homogeneity, etc.)

and

absorbed dose and dose distribution in the product

have to be measured and controlled with suitable

dosimetry systems!

Dosimetry systems in radiation processing

Reference standard systems:

- Dosimeter of high metrological quality used as a standard to provide measurements traceable to measurements made by primary standard systems;
- These systems <u>require calibration</u> and are used to calibrate radiation environments and routine dosimeters;
- Solid phase dosimetry systems : alanine (pellet, rod, film);
- Liquid phase dosimetry systems : Fricke solution; potassium dichromate solution; ethanol-monochlorobenzene solution; ceric-cerous solution;
- Process calorimeters;

Dosimetry systems in radiation processing

Routine systems:

- Dosimetry systems used in radiation processing facilities for absorbed dose mapping and process monitoring;
- Systems, capable of giving reproducible signals;
- These systems require calibration;
- Dosimeter systems:
 - Fricke solution;
 - Perspex (Red- and amber);
 - Radiochromic films (FWT-60, B3 Gex, Gafchromic);
 - Radio-photoluminescent film (Sunna);
 - ECB, ceric-cerous solutions;
 - Process calorimeters (water, graphite, polystyrene);

Dosimetry systems in present practice

Dosimeter system	Method of analysis	Useful dose range, Gy	Nominal precision limits	References
Fricke solution	UV – spectro- photometry	3x10-4x10 ²	1 %	ASTM E 1026 - 04
Ceric – cerous sulphate	UV – spectro- photometry	10 ³ – 10 ⁶	3 %	ISO/ASTM 51205
Potassium dichromate	UV-VIS spectrophoto.	5x10 ³ – 4x10 ⁴	1 %	ISO/ASTM 51401
Ethanol-mono- chlorobenzene	Titration,or HF oscillometry	4x10 ² -3x10 ⁵	3 %	ISO/ASTM 51538
L - alanine	EPR	1 - 10 ⁵	0.5 %	ISO/ASTM 51607
Perspex systems	VIS - spectro- photometry	10 ³ – 5x10 ⁴	4 %	ISO/ASTM 51276
FWT – 60 film	VIS - spectro- photometry	10 ³ - 10 ⁵	3 %	ISO/ASTM 51275
B 3 film	VIS - spectro- photometry	10 ³ - 10 ⁵	3 %	ISO/ASTM 51275
Calorimetry	Resistance/ temperature	1.5x10 ³ – 5x10 ⁴	2 %	ISO/ASTM 51631
ICARST 2017				

CALIBRATION OF DOSIMETRY SYSTEM

• Aim of calibration:

Determine *relationship* between *response* of a dosimeter and *absorbed dose*.

Subject of calibration:

Calibration of dosimeter and measurement equipment.

Calibration methods:

1. Irradiation at calibration facility

2. Irradiation in-plant with reference dosimeters

Validation procedures – EN ISO 11137 Standard

1. Process definition

- Establishing maximum acceptable dose (e.g. 50 75 kGy);
- Establishing process (e.g. sterilization) dose (25 kGy);

2. Installation qualification

- To demonstrate that the irradiation facility has been supplied and installed according to its specifications:

To determine beam characteristics by dosimetry;

No specific dosimetric requirements to verify operation within specifications;

Validation procedures – EN ISO 11137 Standard

3. *Operational qualification* **Aim:**

To characterize the irradiation facility relating plant parameters to absorbed dose;

Gamma facility: nominal dose vs. dwell time, dose distribution, process interruption, transit dose; Dichromate, ECB, ceric-cerous, Gex (B3), alanine FWT- 60, Perspex,;

Electron beam facility: nominal dose vs. conveyor speed, beam characteristics; dose map in reference product, process interruption; Calorimeters, ECB, alanine, Gex (B3), dichromate; FWT-60;

On-line energy measurement:

Validation procedures – EN ISO 11137 Standard

4. Performance qualification

Aim:

- To measure <u>dose map</u> in real product in order to locate D_{min} and D_{max} :

- to establish irradiation conditions according to required specifications:

D(**product**) > **D**(**required**) **and D**(**product**) < **D**(**acceptable**)

- To determine relationship between D_{min} and D_{max} and the dose at the routine monitoring position

Process control

1. Measurement of process parameters: To measure dose at the monitoring position to verify that the irradiation process is within established/required limits

knowing the relationship between D_{min} , D_{max} and $D_{monitoring}$.

2. Control and monitoring of operating parameters: Controlled parameters:

Electron beam facility:

- Electron energy
- Beam current
- Scanned beam width
- Conveyor speed
- Routine dose

Gamma facility:

- Timer setting
- Other products present
- Routine dose

Process control in "flow systems"

X-Ray Machines

Dosimeters applied in gamma processing have been proven to be suitable for X-ray dosimetry:

Dosimeters tested: Alanine, ECB, dichromate, ceric-cerous ;

CENTRE FOR ENERGY RESEARCH HUNGARIAN ACADEMY OF SCIENCES ICARST 2017

Summary

1. Safe, economic technologies with reliable QA/QC methods

- 2. EN ISO, ISO ASTM standards with continuous upgrading
 - e.g. ISO 11137 3: Guidance on dosimetric aspects of development,
 validation and routine control
- **3. Role of IAEA Regional TC projects in radiation processing:**
 - e.g. RER 1017: "Using advanced radiation technologies for materials processing"
 - training courses in using QA/QC methods
 - e-learning and IAEA guides in QA/QC
 - dosimetry intercomparison exercises (Warsaw, Poland)

Thank you for your attention

