

Emerging Areas of **Radiation Sterilisation**

Dr. BART CROONENBORGHS Sterigenics International

Outline

- "Traditional" vs "non-traditional" processes
- 3 examples of "non-traditional" irradiation processes qualified at Sterigenics

Non-traditional Radiation Sterilisation

Traditional Approach

- High sterilisation doses and wide specs (e.g. 25 kGy 50 kGy)
- Ambient conditions during storage and irradiation
- Large batch volumes, "simple" products

New Challenges

- Lower (customised) sterilisation doses and narrow dose specifications

Applications

of Radiation Science and Technology

- Low (controlled) temperature may be necessary during storage and irradiation
- Dose rate restrictions may apply
- Inert atmosphere or other means of product protection
- (Very) low batch volumes, expensive product
- Just In Time manufacturing
- Safety aspects e.g. cytotoxicity, cephalosporine

"Either you decide to stay in the shallow end of the pool or you go out into the ocean"

Christopher Reeve

Dosimetry at Low Temperature

- Apply temperature correction factor
- Calibrate dosimeter at refrigerated / frozen temperature as encountered during product irradiation

Or

- Use simulated refrigerant & PQ at ambient temperature
- Reference location at ambient temperature for routine process monitoring

Complex dosimeter response, alanine example

Fig. 3. Relative response of alanine dosimeters irradiated to 1, 10 and 30 kGy at temperatures between 80 and 310 K.

Example 1: High energy electron beam

20 ml glass vial with approx. 50 mg product

"Dangerous goods"

Storage at irradiation site $2 \degree C - 8 \degree C$

11 kGy – xx kGy

(Average bioburden ≤ 0.1 CFU Method 1 dose setting ISO 11137-2 Verification dose 1.3 kGy)

1st International Conference on Applications

of Radiation Science and Technology

Dangerous goods packaging

Example 1: High energy electron beam

International Conference on Applications

of Radiation Science and Technology

Single sided irradiation, 10 MeV electrons Outer ring of empty vials

PQ dose mapping at ambient temperature: Circular dosimeter at bottom of selected empty vials

Example 1: High energy electron beam

Circular dosimeter at bottom of selected vials Avg. DUR at bottom of vial is 1.40 (CV 3.1%)

Example 2: Gamma

xx kGy – yy kGy

Generally below -20 °C during storage and irradiation

Biological products

ICARST 2017 1st International Conference on Applications of Radiation Science and Technology

Example 2: Cold chain management

Product under dry ice sent to the irradiation site

Product removed from transport container and stored on-site in -80 ° C freezers

Loading Sterigenics cryotainers: At controlled T Coolant during irradiation: Dry ice (validated positions where it is demonstrated there is no effect on dose delivery to product.)

After irradiation: transferred at controlled T to -80 ° C freezer.

Product shipped under dry ice

ICARST 2017 1st International Conference on Applications of Radiation Science and Technology

Example 2: Cold chain management

Irradiator:

Batch irradiator; because of customised and tight dose ranges, Small volumes and short turn-around times.

Performance Qualification dose mapping:

Ambient temperature using simulated product (and coolant)

Building in operational flexibility to accomodate different volumes in shipment

Example 3: Gamma

20 ml glass vial with approx. 500 mg product

"Dangerous goods"

Storage at irradiation site below -20 °C

Irradiation under cold chain management

xx kGy – yy kGy

Method VD_{max}^{SD} (ISO TS 13004)

Batch irradiator (full manufacturing batch = 1 run)

Dangerous goods packaging

ICARST 2017 1ª International Conference on Applications of Radiation Science and Technology

Conclusions

In order to succeed in the environment of ever-more complex sterile health care products one needs to think outside of the box and provide a <u>customised</u> solution:

- Techniques to minimise radiation damage
- (e.g. Low temperature, inert atomosphere, radioprotectants)
- New methods for establishing a sterilisation dose, performed under the same conditions as the ones that are found to minimise radiation damage of the product
- Mathematical modelling, specialised irradiators and dosimetry
- EHS procedures (and possibly licenses)

Partner with a diverse group of people and already early on in development

... It's in our hands

Thank You!!

Questions?

Bcroonenborghs@eu.sterigenics.com

ICARST 2017 1ª International Conference on Applications of Radiation Science and Technology